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ABSTRACT

The paper considers the interaction of ground water flow characteristics,
aquifer parameters and wining geometry in order to estimate mine water
inflows. The ground water flow conditions include both steady and
unsteady state flow in an infinite and finite aquifers to an imaginary
pumping out well. Both linear and non-linear flow equations are
discussed. The application of non-linear equations has indicated that
with the use of appropriate terms in these equations both laminar as well
as turbulent inflows can be simulated. Water inflow to underground
dewatering tunnels are also discussed in terms of both laminar and
turbulent flow., Mine water inflow to a mine discharging to multiple
dewatering outlet is also included. The application of various
techniques outlined enables a more realistic estimate of water inflow to
be made which can be conducive to planning mine dewatering systems with
reference to economics and safety.

INTRODUCTION

Mining under complex hydrogeological conditions may be extremely costly,
influencing the overall viability of the project, and from past

experience an accurate prediction of mine water inflow is necessary
during the feasibility study. This paper deals with some of the advanced
analytical methods for predicting mine water inflow. These techniques

can be applied to a wide range of specific conditions and consequently
more realistic inflow situvations can be modelled. Thus, a better
estimation of the ground water inflow to mining operations may be
obtained, allowing for a cost effective design of mine dewatering systems.

INTERACTION OF AQUIFER PARAMETERS,
MINING GEOMETRY AND GROUND WATER FLOW

Mine dewatering problems can be simulated either by imaginary pumping
out wells and/or imaginary dewatering underground roadways.
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(i) Dewatering wells :- Conventional approach is to calculate inflow
from an aquifer to an imaginary well at a constant flow rate so as to
lower the -piezometric surface (or water table in case of unconfined
aquifers) below the coal seam at an assumed mine boundary. The pumping
out rate of the well is taken as inflow quantities.

(ii) Simulated dewatering roadways :- Recent approach is to simulate mine
water inflow based on dewatering underground roadways, instead of the
principle of imaginary pumping out wells and offersan alternative method
requiring different flow equations.

For both approaches two types of flow conditions are usually considered;
steady state flow where for a constant rate of discharge an equilibrium
state of drawdown is achieved and unsteady state flow where drawdown is
changed with time. The flow characteristics can either be linear or
non-linear.

The type of aquifers considered for this analysis are unconfined;

confined and leaky aquifers conditions. A simplified approach is to

assume that the aquifer has an infinite boundary but in the presence of major
geological discontinuities, faultsand dykes the aquifer will behave as a
finite one. Flow conditions will vary considerably and therefore, the
appropriate flow equation should be used.

In mining operations to dewater an aquifer would require several pumping
wells in close proximity which will have certain degree of interference.
An outline of this technique is included in the present paper. Types of
mining excavations which can be modelled are shafts, surface mines,
underground minesand a large underground chambers. Mode of mine water
inflow is also important and can range from uniform to a sudden inrush
situation. The types of analytical solutions considered here are uniform
flow models applied to shafts and underground mining operations,

The combination of the various flow conditions, aquifer characteristics
and boundary, mining excavations, and the dewatering methods are
extensive. Only those existing equations which are applicable to
simulate mining operations are discussed.

LINEAR ANALYTICAL INFLOW SIMULATION MODELS

The linear analytical mine water simulation models are based on analogy
of a single imaginary pumping out well. The aquifer characteristics
(permeability, transmissivity and storage coefficient), the desired
radius of mine boundary and the depth of dewatering below original
piezometric surface are used as input quantities to estimate the
pumping capacity for the mine. Simple analyses of this situation are
based on linear flow conditions associated with steady state flow and
unsteady state flow in unconfined and confined aquifer. This approach
requires the preparation of a simplified hydrogeological section of the
mine, determination of aquifer characteristics and assigning mean
hydrogeological characteristics to the rock mass, and superimposing
simplified mining geometry on the hydrogeological section. This enables
an estimation of drawdown and mining radius to be determined for the
calculation of mine pumping capacity.
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Figure 1. Mine dewatering in an unconfined aquifer at
a constant rate of discharge and steady
state condition.
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Table 2
Required pumping rates for various drawdowns and radius
of influence for 5, 10 and 15 year periods

Time (t) Quagtity- Drawdown | Radius of Influence R
d m>/d D{(m) m
1825 50,000 1.4 6,595
1825 300,000 32.84 46,556
1825 " | 600,000 74.67 43,018
1825 700,000 100.21 39,890
3650 50,000 5.6 64,546
3650 300,000 37.2 61,221
3650 600,000 91.68 54,133
3650 700,000 108.12 48,658
5475 50,000 5.875 76,440
5475 300,000 39.50 72,328
5475 600,000 99.95 60,847
5475 665,000 140.00 57,692

5
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The generil .notations used in single well equations are given as follows :

D - Lowering of piezometric surface or water table to a level H from
the Original head H, (m)

Drawdewn in a finite aquifer before mine boundary is reached (m)

(=]
=]
[}

- Hydraulic gradient (dimensionless)

Aquifer coefficeint of permeability or hydraulic conductivity (m/d)

AR e
]

- Coefficient of permeability of aquifers (m/d)
- Acceleration due to gravity (9.81 m/secz)

- Thickness of formation being dewatered (m)
Aquitard thickness (m)

- Quantity of mine inflow (ma/d)

O 0 ow
[}

Q

- Quantity of mine inflow in a finite aquifer before cone of
depression reaches mine boundary (m3/d)

Effective radius of influence of the cone of depression with
time t (m)

-
1

Radius of cone of depression at mine boundary {(m)

]
i

~ Mine radius where drawdown is required (m)

- Storage coefficient (dimensionless) = p o

KL  Transmissivity of aquifer (mz/d)

[ I
i

-~ Time elapsed (d)

Time at which cone of depression reaches mine boundary

jnd
}

u - (aZS/hKLt) a variable in Transient state equation
W(u) Theis well function, dimensionless (Appendix 1)
u - Stressfree porosity of rock (dimensionless)

@ - Shape factor (dimensionless)
Flow to a single well in Infinite Aquifer :-

Figure 1 shows the flow conditions for dewatering a mine in an unconfined
aquifer. Equation [1a] and [1b] Le'czfalvy (1982) permit calculation of
the steady state drawdown and the vadius of the cone of depression. Lt
can be seen that equation [1b] contains R in both sides of the equiry
sign and consequently, should be solved iteratively as given in Table 1.
Table 2 summarises the results for assumed pumping times ranging from 5
to 15 vears, at rates of pumping between 50,000 to 700,000 m3/d and show
the steady state drawdowns and radius of inflows.

Figure 2 shows the dewatering of a mine situated in a confinced, infinite
aquifer, with steady state flow conditions (Leczfalry, 1982). Numerical
application of equations [2a,2b] shown in Figure 2, is given in Table 3,
and are solved iterativelv., The vesults in Tahle 4 Indicate that for a
constant drawdown of 160 m, both the required pumpirg out quantity and
radius of influence change with time.
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(Variable discharge with t
Surface Q for agiven Q-constant drawdown)
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Q=27xLKD/ln Ria [2a]

R=[[2LKt/S -a%S)/In Ria-1/2)]"? [2b]
(after Le’czfalvy, 1982)

Figure 2. Idedalised conceptual model of dewatering of
a confined artesian infinite aquifer at
constant drawdown condition (steady state

equation).
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Figure 3 and Tables 5 and 6 show similar mine dewatering calculations
for an infinite, confined artesian aquifer in unsteady state flow
condition,

Flow to single well in finite aquifer :-

Figure 4 shows the dewatering of a mine in a finite aquifer for a steady
state flow condition for a given rate of pumping 'Q', a constant drawdown
is achieved but the radius of influence changes with time. The time (T )
taken for the radius of influemce R to reach the mine's finite boundary,

is given by equation [3c] (Le'czfalvy, 1982). TFlow equations for 't'
between 0 to t_ are given by equations [2a,2b] and indicated in Table 7.
¥or times greager than ty flow quantity is reduced to main a constant draw-
down, as given by equation [3a] and indicated in Table 8.

Figure 5 illustrates the dewatering of mine in a finite aquifer for
unsteady state flow condition at a constant pumping rate. It can be seen
that the drawdown changes with time until the mine boundary is reached

at time (ty) given by equation [3c]., The drawdown due to further pumping
(& tv) is given by equation [4]. These calculations are shown in Tables
9 to 11.

OPERATIONS OF MUTUALLY INTERFERING WELLS (CONSTANT DISCHARGE)

In a dewatering situation which requires the pumping of large quantities
of water it may be necessary to use several pumping wells because of the
limitation in capacity of individual pumps and in this situation the
following equations would be applicable (Le'czfalvy 1982) as shown in
Figure 6 and a numerical example is indicated in Table 12.

D, = (Q1/2nLK) 1n'R1/a10 + (QZ/ZnLK) 1n RZ/a10 (5.a)
D, = (Q,/27LK) 1n Ry/b + (Qy/27LK) 1In Ry/a,, (5.b)
D, = drawdown of well I

Q = discharge from well I
r,, = radius of well I
b = distance between the two wells
Q2 = discharge from well II
IfQ =0 =0 R =R, =R
R, = radius of influence by well I
R, = radius of influence of well IT

K = permeability coefficient of the aquifer

D, = (Q/27LK) 108 /a, b) 5.

R = [[(21Kt/s) - a2/2}/(in R/a - D1} [2.b]

D, = (Q/271K) (In RZ/aZOb) (5.d)
g9
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(after Le’czfalvy,1982)

Figure 3. Mine dewatering in an infinite artesian
confined aquifer with unsteady state flow.
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Where Q=[27LKD exp'*"')/in Ro/a [3a)
A= 27LK/Ro?ln Rola [3b]
tv=Ro%(ln Ro/a-1/2) (S/2LK)+Sa?/4 LK (3¢]

. tv__ 2000 4000 6000 Time t

)00 T T T T T T

| (Days)
i L Equations [2a,2b)

200} '
©
m\ 800 B
£t Equations [3a.3b)

L0of

0-

{b) Variable discharge time curve for a constant drawdown.

Figure 4. Dewatering a finite aquifer at a constant
drawdown condition. [Steady state)
(After Le'czfalvy, 1982}
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Table 8
Mine dewatering calculations for a well discharge
for constant drawdown condition (variable discharge)

Time Elapsed Discharge
after pumping started | Radius of Influence 3 /d
t (days) m'
10 2548 1451.0
50 5476 1345.0
100 7619 1304.0
Eq. ! 250 11800 1254.0
2a,2b 500 16435 1218.3
750 19958 1198.2
1000 22905 1184 .4
1200 25000 1175.8
1300 25000 416.6
1400 25000 384.6
1500 : 25000 354.9
1600 25000 327.4
1700 25000 302.7
1800 25000 278.5
2000 25000 238.2
Eq. 2500 25000 159.8
3a,3b 3000 25000 107.2
4000 25000 48.25
5000 25000 32.50
5500 25000 21.64
6000 25000 9.73
7000 25000 4.38
8000 25000 1.96
9000 25000 0.88
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(a) Dewatering of a finite aquifer at a constant discharge

tv=Ro?(lnRo/a-1/2) (S/2LK) + Sa?/4LK [3c]
D= Do +(Qot/SRo?) (4]
0 tv Time —e

Time to reach

|
= Use equations | boundary
é’ [ 2a,2b] !
glPo Tl
Q
o
Equation 4

D

Q
{b) Time-depression curve at a constant discharge

Figure 5. Idealised conceptual model of dewatering a
finite aquifer at a constant discharge rate.
{Unsteady state flow) (After Le'czfalvy,1982)
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Figure 6. Dewatering of an infinite confined aquifer by
mutually interfering wells.
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NON~LINEAR INFLOW MODELS SIMULATING FLOW TO A WELL

The development of non-linear theory of mine water inflow can be
attributed to Schmieder (1978a, 1978b, 1979) and Perez-Franco (1982).
The analytical solution based on unsteady flow condition given by the
following equation

2
- aQ C Q R-a
D Tr Lek w(u) + Ry z—i—i- = [6.a]
T L
Q W(w) Q2 R-a
s Tz R [6.01
D 4T,
2 T
_as
where u = TRLE [6.c]

W(u) = Theis Well function
TR & TD = Turbulent and linear transmissivity coefficient respectively(mz/d)

A 3/4 .
T, = i?'(TD) (Schmieder 1978a) [6.d}]

R

1

[(2KLt/S-a%/2)/(In R/a - D))} [2.]

The first term of equation [6.b] is Theis equation for unsteady linear
flow and the second termis drawdown for pure turbulent flow., Equation
[6.b] can therefore be used to predict laminar flow by neglecting the
second term, whereas for turbulent conditions, the first term can be
ignored.

Similarly steady state flow equation is given by equation [7] and [2.b]
and illustrated in Fipure 2.

2
p=-L 1R+ 2 _¢

R-a
S ) [71
ZTD a 4Tr2

2 “Ra
T

It is apparent from the calculation im Table 13 that the application of
linear flow equations to practical situation where mixed flow or turbulent
flow conditions exist results in a substantial over estimation of inflow
quantity.

WATER INFLOW TO AN UNDERGROUND TUNNEL
Non-linear inflow to an underground tunnel below a Karst aquifer

A non-linear flow to an underground tunnel working below a Karst aquifer
as illustrated in Figure 7 and is given by the folllowing equation after
(Schmieder, 1978a) :-

3/2

D = [(@/2v(X'L")) In R/X + (Q/2n(KL) In RZ/2da + Q2 7a) %y 18]

L' = thickness of aquifer
K' = permeability of aquifer m/s

a radius of underground gallery m
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Figure 7 Mine dewatering by an underground gallery
below an unconfined aquifer.
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X = half distance of fault zones

K'L' = transmissivity of the aquifer m25-1

d = depth below the ore deposit in the aquifer m
R = effective radius of the zone of influence m
£ = length of draining .gallery m

A nuterical example of dewatering a mine gallery below a karst aquifer
is indicated in Table 14.

NON-iINEAR FLOW TOWARDS AN UNDERGROUND GALLERY FULLY PENETRATING
A CONFINED AQUIFER

The equation of non-linear inflow of water to an underground gallery fully
penetrating a confined aquifer as illustrated by Figure 8 under unsteady
condition is given by the following equation (Perez-Franco 1982)

D= [q/LI(d + q2/L2Kt2] R [9a]
2 2 2.2,.% LZK 2
or q = [-1/LRy + (1/L7 K~ + 4RD/LK DIT® . - {961
Q=21q
where
q = discharge per unit length at one side of the gallery (m3/d/l)
Q = quantity of inflow for the whole length of tunnel (m3/d)

= piezometric height at a distance x (m)

distance measured from the face of the gallery (m)

oo T
"

distance from the face of trench to the place where drawdown
is zero (m)

[}

K, linear hydraulie conductivity (m/d)

o
It

drawdown at the gallery atr (m)

~
"

turbulent hydraulic conductivity (m/d)
In this case R is given by equation [2b]

R = [(2LK, t/s = a°/2)/(1n R/a - )] [2b]

A numerical example of this flow condition is presented in Table 15.

LIMITATIONS OF ANALYTICAL TECHNIQUES IN
MINE WATER INFLOW SIMULATION

The analytical approach in simulating mine water inflow has a severe
limitation in oversimplifying mining geometry, strata section, mine

and hydrogeological boundaries, assumptions made in the derivation of the
analytical equations used may not conform with the actual field conditions
and hence the calculated inflow quantities may be distorted. Regional
variations in the aquifer characteristics (K, S, T) cannot be easily
incorporated in the analytical techniques. The most important variables
are as follows

(i) Lateral variation within the same lithological unit.

(ii) Macroscopic changes in the aquifer characteristics with depth
depending upon changes in lithology.

(iii) The effects of discontinuities, fractures and faults in the same
lithological unit.
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Figure 8. Non-linear flow to an underground
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(iv) Induced mining fractures and zones of consolidations particularly
in the vicinity of longwall faces.

(v) These techniques can only be applied to uniform inflow conditions
and are not applicable to inrush situations.

CONCLUSIONS

The paper describes various analytical solutions to simulate some
practical mine inflow predictions problems associated with underground
ooal mining operations. Both, linear and non-linear flow conditions to an
imaginary well and dewatering roadways are given in the form of numerical
examples. Non-linear flow equations have been used to incorporate inter-
granular laminar, fracture and turbulent flow conditions. This approach
enables a more realistic estimation of the quantity mine inflow to be
calculated with its obvious economic and safety implication to the design
of mine water control systems. Non-linear flow equations simulate the
most prominent flow conditions by neglecting the insignificant modes of
inflows.
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