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ABSTRACT

Thie paper presents a revised form of the Kozeny equation for
laminar fluid flow through packed beds in terms of particle shape
factor and surface mean diameter, rather than specific gsurface.
The equation is based upon a model of pore formation which takes
into account the interlocking of irregular particles. It is
concluded that for comparative purposes the 'effective' specific
surface is a quantity which can be derived exactly from
permeability and porosity measgurement. The effective gpecific
surface affords a ready means of control in comparing one packing
with another, provided that a standard, conventional method ie
adopted for the assessment of surface mean diameter.

INTRODUCTION

For well over forty yeare the accepted equation of fluid flow in
permeametry in the laminar range hasg been the Kozeny-Carman(i,2)
equation.

Carman(3) and Dallavalle(4) suggested independently in 1938
that the determination of specific surface should be carried out
by means of permeability measurement, and by 1941 Carman had
elaborated upon the appropriate methode for deing so. The
importance of Kozeny-Carman in permeametry has been recognized in
the literature, and in International Sympoeia on Particle Size
Analygis, since that time.
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The drawbacks of the Kozeny-Carman equation have been
appreciated from an early stage and discussed in a number of
texte. One eignificant problem hag been the failure of the
equation to deal properly with flow through material departing
radically from the spherical or near-gpherical. It therefore
fails to make accurate predictions of permeability for materials
gubject to interlocking rather than point contact. Another
problem is Kozeny's use of the specific surface to describe
material size. Clearly, it is possible for materials of the same
'diameter’' to have differing values of specific surface.

In this paper, shape and diameter are separately identifieqd,
and hydraulic radius is developed with especial reference to the
interlocking of particles. It ies considered that the revised
equation of flow worked out represents a more general and a more
accurate degeription of the factore affecting hydraulie
conduetivity, and makes a clearer statement of the nature of flow
in the laminar range. The most interesting conclusgion to be drawn
from the analysis is not only to confirm that the Kozeny constant
is merely a consequence of the nature of the packing of the
material, but alsc that it varies between different materials at
the same porosity, even where they have identical shape factors
and diameters and, therefore, identical specific surfaces. This
makes prediction of the conetant for particular porosity values in
a given material an Iimposeible task; the value of the constant is
unique to the shape of the material and its own unique mode of
packing. For this reason, it is a conclusion of the thesis(5) in
which the new equation is derived that the determination of
surface area for quality control purposes would be more soundly
based on the 'effective' specific surface, as defined in thie
paper.

The new equation proposed {8 analogous to the Kozeny equation
but is considered to be more general in its concept and in its
application. The new equation offers an explanation of the
mechanism of flow through spherical and non-spherical particles,
and sguggests a theoretical basis for the approximate value of the
Kozeny constant in spherical material over the range of porosities
investigated.

THE UNIT CELL AND POROSITY
Introduction
Equatione so far developed to describe flow through packed porous
beds do not include an effective parameter to account for the
shape of the particle: the analysis which now follows results in
an equation which takes the effect of particle shape into account
as an integral part of the initial model of flow devised.

Unit cell

The failure of Slichter's(6) analysies diverted attention from hie
basice approach. In any investigation of the spatial relationships
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Figure 1 Slichter minimum pore crose section
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of particlee within a packed bed, however, it is still appropriate
to start where he started - with the unit cell based on spherical
arraye. Fig.1 showe the typical pore cross section investigated
by Slichter. Clearly, the cross-section shape of pore tube to be
observed in this diagram is that at the plane of minimum pore
erogs-section, called by Graton and Frager(7) the throat plane.

To describe the packings, for flow assumed to take place normal to
the cross-section of the throat plane (at the throat planes
themselves), the ratios now described below are employed.

Volume porosity

It is possible to obtain the volume of the unit cell in terms of
an equivalent sphere diameter. Let the diameter of the equivalent
sphere be 'a'. The unit-cell volume is ¢;a® where ¢, 1g a
coefficient varying according to the geometry of the cell.
Following Slichter, and Graton and Frager, it ig clear that each
cell, of whatever shape, must contain parts of a sphere which all

together make up a unit sphere. Therefore, the total volume of the
spheres contained in unit volume of the packing must be

and thie quantity must equal 1-n where n is the porosity, so that

n = 1-m (2)
bc,

for packings of gpheres.
Area porosity
The area porosgity n' is defined for any plane through the unit

cell as the ratio of the pore area to the area of cross-section of
the cell at that plane.

Porosity ratio
The poroelty ratio is defined ae the ratio of the area porosity

for any chosen plane through the unit cell to the volume porosity

! 3)
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Tortuosity

In all caeges, the thickness L ie the distance between two faces of
the unit cell and perpendicular to them. The tortuous length Le is
coneidered to be the distance, ineide the unit cell, along the
locug of the centroid of the pore croge-section between one throat
plane and the next. The path described in this way by the

centroid is assumed to conform with the shape of the surrounding
sphereg and to follow the shorteet possible tortuous route from
throat plane to succeeding throat plane.

AN ORIGINAL ANALYSIS OF FLOW

An idealized model packing

It 1s argued that flow must be conditioned by the shape and area
of the cross-section at the throat plane. Porosity is represented
by equating the number of imaginary spheres of diameter 'a' in an
idealized model packing to the number of irregular particles
actually present in the packing. For unit volume of the packing,
the following expression is obtained

from which

where v and (gx) are the Heywood(8) volume coefficient, and the
statistical mean volume diameter, respectively.

In equation (4), the number of spheres ic 1/(c,a®). Clearly,
the same number can be obtained either by maintaining c, constant
and varying 'a', or by maintaining 'a' constant and varying c,,
which is what was done in the previous section on spherical
porogity. From now on, it is more convenient to represent any
packed-bed material by a unit cell based on a constant value of
¢,. On thie baeis, the concept underlying equation (5) ie of 'a
as an arbltrary diameter of an Imaginary sphere defined in terms
of the mean volume diameter of the particles in the bed, and
varying in accordance with equation (5) to describe porosity
change. In equation (5), ¢,, v and (qx) are constant for a given
material and ¢, is constant for all materials.
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Description of idealized cross section of pore

The hydraulic radius can alsc be expressed in terms of 'a' and n.
In order to justify a relationship, consider a unit-cell section
based on the throat-plane crosgs-section area shown in Fig.2. The
section is idealized to represent the average cross-section which
is regarded ag being continuous throughout the bed. 1In order to
acecount for a variation in porosity in non-spherical material, the
imaginary model spheres of diameter 'a' are considered to be
interlocked to a certain extent, the common length between
contiguocus particles being 2.o.a. For such a section, the argument
then runs as followse

height half unit cell = J3 a (6)
2
half unit-cell cross-sgection area = /3 a® (7>
4
side length of pore = & - 2J/30a
2 2
= [1-o31a (8)
L2 ]
pore perimeter = 3 f1- o311 a (9)
L2 i
height of pore area = J3.8a - oa - o.a
2 2 2
= v3 1- w31 a (10)
2 L2 ]
pore area = 1 [1- o311 a v3 1- /31l a
- 2 12 ] 2 L2 J
= v3 1- ow31% a? (11)
4 L2 ]
and this area must be given by
T.hn. /3. a®
4
8o that
[1- a31® = T . n (12)
L2 J
7
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Analyeisg of hydraulic radius

The hydraulic radius is

v3 T1- o3 1% a?
4 L2 1
M = —memmemm————————
3 [1- o311 a
L2
= 1 [T1- o3l a (13)
43 L 2 1
and
m* = 1 [1- o3l a?
48 | 2
= 1 .T.n. at®
48
= cg . T . n . a? (14)

where ¢; is a constant having the value 1/48.

From equation (5), it can be seen that a reduction in
porosity, n, results in a reduction in 'a'. This means that
relatively lower porosities are represented in the model by
smaller spheree packing together. It seems reasonable to suppose
that the three-dimensional mechaniem involved ig guch that the
porosity ratio itself 18 proportional to porosity, that is to say

T = constant . n (15)

and that, therefore, pore area is a function of the gquare of the
porosity. If ¢z is the constant in equation (15), then

m = ¢z . Cy . n* . a?

= #(n®.a?) (16)

The same kind of relationship can be demonstrated for the
Graton and Fraser Cage 1 maximum concave-sgquare cross-section, and
gince these sections are extreme forms it seems reasonable to take
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equation (16) as having general application with c. and ca varying
with average cross-section shape, but assumed constant for any one
packed-bed material.

From equation (5),

ar = 1 . ovEee 1 . (qu)® (17)
(cx)zlﬂ (1_n)1l!

and if this value of a® ie substituted in equation (16)

m* = Tegeg 1l . v . _nt . (qu)® (18)
{Tesrz /e (-me

AN ORIGINAL EQUATION OF FLOW

Substitution of hydraulic radius
in basic capillary-tube equation

Kozeny showed that the actual velocity through the poreg u, must be
given by

ug = (19)

3 e
e
3

where u 1s the average velocity of flow and, from Poigeuille(9)

(20)

fall=

where ko ig a constant defining pore shape, g the acceleration
caueged by force of gravity, v the kinematic viscosity, and H the
resultant driving head across the packed bed. Following Kozeny,
it is now poesible to expand equation (20) by substituting for m?
from equation (18) to obtain

ue = [_eg.eg 1 .1 . g . v3/® n? . (q;)z . H (21)
L(e1)®’®) ko v (1-n)=7? Lo
9
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In equation (19), Kozeny assumed that the area porosity
equalled the volume porosity; that is, he agsumed that the pere
avea tock up all the available volume porogity n (thought of here
as an area porosity). However, in the argument now being pursued,
the area porosity n' must be substituted for the volume porosity n
in the Kozeny statement, so that

Ug = u . Lo
n' L
= 1 . u . Le (22)
ey n? L

If the right-hand side of equation (22) is substituted in equation

(21), then
u = [ ez.(eg)®2 1 . 1 .g . vEr o n* . (q;)'. i
L (ea)®? | [kolLe12] v (1-n)e’®
LolL )
= [ eol . g . ve’® . n* . (q;)’ .1 (23)
Loky ) v (1-n)2’°

where k; is the Kozeny constant and co is a coefficient

cg.(cg)?

(e )28

which varies with particle shape and is constant for porosity
change in the same material. From equation (23)

kv = [ eo 1 . vE’® | n* . (q;)‘ (24)
€ L ks (1-n)®’/?

where k is the coefficient of effective permeability derived from
Darecy'e(10) law.

Comparison with Kozeny equation

If the Kezeny equation is written in terms of kv/g, then

10
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1= . n® . Rs? (25)
J

Valueg of (co/ky) can be derived by means of equation (24) and
valueg of (1/k,) from equation (25) for the same given shapes and
porosities. From the two equatione

A N 1 o [oxs 17 (26)
4 | n.{1-n)*’2® -=
L gx |

and if ¢, ig substituted in equation (24) according to equation

(26) then
kv = 1 . 1 1. 0e1°2 . n* . Rg? (27)
3 L kx  n(1-m)*’® | Lv] (1-n)=7?

which i8 to equate the equation (24) to the Kozeny equation, with
the shape factor quoted in reciprocal form for eage of
calculation. The resulting general expression can be stated as

kv = fegmy)t . [£17% . g(n) . x,° (28)
2 L ks L v
where
g(n,) = 1 and ¢(n) = n*
n.(1-n)*’* (1-n)2’?

It can be demongtrated that g(n,) ie sensibly constant over a
large range in porosity. It has a value which ig exactly 4.94 at
a porosgity of 0.400, while being within 1% of thig value for a
range of porogity from 0.375 to 0.480, and still within 5% for a
range of porogity from 0.330 to 0.530. In other words, over the
range of porosity regarded as applicable to formations of natural
gandg, ¢(n;) can be regarded as constant.

11
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CONFIRMATION OF ANALYSIS
BY TESTING ON PUBLISHED DATA

Both Coulson(11) and Wyllie and Gregory(12) have published
permeability and porosity data for beds of regular particles of
known shape. The porosity function n*/(1-n)Z’® can be tested for
the Coulson data by plotting kv/g as ordinate against n*/(1-n)?’?
ag abscigsa. In general, the plots, an example of which is shown
in Fig.3, are straight lines. This relationship is further
corroborated by plots of the Wyllle and Gregory data with similar
results.

Original equation and x,?
The next stage in verification is to show that kv/g is proportional

to the square of the particle size. To do this, it is necessary
to define a quantity A which is the kv-value for unit porosity

£z
function. For if
A = kv. 1 (29)
3 #(n)
then
A = [ g(ny) . T£1°2 1 . xe?® (30)

L ki tey

In considering the right-hand side of this expression, it can
be seen that, for material of the same shape, a cube for example,
the material will have a constant shape factor (f/v)~%, although
it may have different size fractions with diameters x; varying
with eize. The function g(n,) is sensibly constant and it will be
assumed for the purpose of this exercise that k; can be regarded
as_constant for a range of diameter squared x;? in a material of
the same shape and all at the same porosity. The foregoing has
been underlined to emphasize the importance of the conditions
under which the test must be applied.

Then, for constant ¢(n,), (f/v)~% and k,

L (31)

and straight-line plots result from plote of A - X;? for materials
of the same shape at the same porosity. The surface mean diameter
Xs 1s assessed by the methods of Heywood, using the equations

13
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derived by Hateh and Choate(13).

Spheres pregent a little difficulty in that, although
(f/v)~%-values are common, porosity variation is limited in the
Coulson series. Only single porosities were investigated in three
sizes and only two porosities in the other two. The Wyllie ana
Gregory series for a single sphere 1s better with four values
giving excellent correlation for the (kv/g) - ¢(n) plot. Thie
makes 1t possible to compare two sizes of Coulson sphere at a
porosity of 0.393, for kv g values actually obgerved, with one
derived value of kv/g from Coulson and one from Wyllie and Gregory
at tnat porosity using the appropriate regression equations from
plots of kv/g - n. For the values detailed in Table 1, which have
been calculated for a porosity of 0.393, A as ordinate ig plotted

TABLE 1

VALUES OF A AND x,;% FOR SPHERES

n = 0.393 #(n) = 0.03327
kv
Sphere '3 A Xs Xs?
X10000 x10000

Coulson 2 3.72907 112.09 0.635% 0.40323
Coulson 3 1.52954 45,97 0.397 0.15761
Coulgon 4 0.90843 27.30 0.317 0.10049
Wylllie and

Gregory 0.87040 26.16 0.300 0.09000

against x;% ae abecisea in Fig.4. The regression is shown on the
figure. There ieg a high degree of correlation.

Now, if the sphere plot, using the same data detalled in
Table 1, is forced through the origin as theory demands, the
result is most intereesting. The plot of Fig.4 shows no change,
but the regregsion ig changed slightly. Now, the glope of the
plot through the origin is 0.027775, which is8 exactly the value of
(f/v)~"% for a sphere. Therefore, from equation (30)

Ki = #{n,) x (f/v) "%

slope of plot

15
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= g(n.) x 0.027777
0.027775

that is to say, ki is demonstrably equal to ¢(n,), as theory
demands should be the case for a spherical particle. This is a
highly encouraging regult and explains why €0 many workers have
adopted a value of the order of 4.94 for k, in spherical arrays at
or cloge to a porosity of 0.400.

Similar resulte are obtained for a seriesg of plote at
different porosity valueg for other shapes. The evidence ig that
for whatever shape there is a linear relationship through the
origin of the form

A = constant . X2 (32)

where the constant is

g{ny) . £1°%
ki Lvl

and thie, of course, ig fully in accord with hydraulic-radius
theory, in which permeability 1is regarded as being proportional to
the reciprocal square of the specific surface.

Permeability and the shape factor

The final stage in verification is to relate permeability to the
shape factor for the material being investigated. To do this, 1t
i8 neceesary to define a quantity Ao which is the A-value for unit
diameter-squared. For, 1if

Ao = A . 1 (33)
Xl
then
Ao =  g(ny) . £1°2 (34)
Ki Lvi
and
Ao . ki = g(nmi) . (£/V)7F (35)

If Aok, 1s plotted as ordinate against (f/v)~? as abscissa, then
the slope of the plot must be given by the @(n,)-value for the
particular perosity value being investigated.

16
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Again using values calculated from the Coulson, and Wyllie
and Gregory, data, Agk: and (f/v)~% have been plotted with Agk, as
ordinate and (f/v)~% as abscissa for a single porogity value in
Fig.5. Similar reeults are obtained throughout a series of plotse
over a range of porogity from 0.32 to 0.50. For each value of
porosity there is a linear relationship through the origin of the
form

Ao . ki = conetant . (f/v)°? (36)

where the constant is the appropriate value of ¢(n,) for the
poroeity involved.

FLOW MECHANISM AND SPECIFIC SURFACE

Nature of flow mechaniem

The interesting thing to be noted from the model of flow now fully
defined 1is that, for any particular poroeity value, a range of k,
values will satisfy the framework of relationships established for
A - X322 and Aq.ky - (f/v)~2 plote. For each porosity value in
respect of a given shape, Ag.k: is easily determined. It is the
value of the porogity function #(n,) multiplied by the reciprocal
square of the shape factor for the particle. But A, and k, are
interdependent and A, will assume different values for differing
ki, while pregerving an identical value for Ag.k: which will
remain the game ag k,; varies.

So, 1t is possible to think in terms of two or more particles
having identicel shape factore and the same dlameter, therefore
the same specific surface, but with different k, values for the
game porosity in each material, and consequently differing
permeabilities for that same porosity. It seems, in theory, that
even though materials can have the same specific surface while
having slightly different shapes, the slightest variation in shape
causes the materiale to pack together in waye which create
different packing formations so that the configuration of the
pores ie not the same. This difference in configuration is
reflected in the variation of k,-values capable of satisfying all
the basgic relationghipe defined. 1In these circumstances, 1t would
be most unlikely that it could be possible to predict in advance
the value of k, applying to a particular shape of unknown shape
factor for a given porosity.

It can be said, then, that it is possible to demonstrate for
known shapes the relationships which must obtain between the
parameters of the main equation (28), but that no unique
relationship seems attainable for the estimation of a k, value
applicable to a given particular shape.

17

Reproduced from best available copy



International Journal of Mine Water | © International Mine Water Association 2006 | www.IMWA.info

The evidence from an examination of the data provided by
Coulson, and Wyllie and Gregory, for regular particles clearly
supporte a theoretical model framework which can be summarized as
follows: -

1 Main equation:

kv = g(n,) . [£17°%F . 8(n) . xs® 37)
£z Ky Lvi

2 For the same shape at the same porosity:

ke . 2 = A = [ g(ng) . 1771 . x? (38)
g #(n) L ks tvi

3 For unit diameter of material:

AL 1 = Ao = g(ny) . [£1°° (392
Xi® ks tvi
and
Ao . ky = g(nmy) . T£1°% (40)
Lv!

with plots of Ag.k: - (f/v)"% through the origin. This
relationghlip holds for the whole range of shapes and for the whole
range of porosities exhibited by single-value or multi-value
plots.

So, we may take the theory and the range of equations (37) to
(40) as an accurate expression of the mechanism of flow through an
extended range of shapes and sizes of packed-bed material over an
extended range of porosity.

The k./¢(n:) ratic

The Kezeny constant k; is the numerator of the square of what may

be termed an interlocking factor, and the denominator is g(n,). In
the case of a sphere, it hag been clearly demonstrated that

Ky = ¢(ny) = 4.94 cver a limited range, and so k,/#(n,) is unity. In
which cage
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kv = [£17% . #(n) . x:® = _1 . @(n) (41)
4 Lvl So?

and thie ie an expreseion which can be taken to hold for a sphere
which {8 equivalent to a particle with a shape factor f/v and a
gurface mean diameter xX;, but which is not spherical in ghape.
This 'effective' S, will be referred to as S,

effective
From equation (41)
So® = g(n) = A2
effective Tkvl (42)
lg J
and so
So = A"°-® (43)
effective
The diameter of the effective sphere must be
Xs = 6 (44)
effective A-©o.3
Again, from equations (39) and (41), in which x; 18 the
surface mean diameter of the actual particle
Ag = A = fe1-2 = slope of A - xX3* plot (45)
X? vl
act eff
and since, from equatione (39) and (45)
g(ny) . f£1° = A, = [£1°® (46)
K1 Lvl Lvl
act eff
then
20
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(f/v)~2 (g/v)® {(L/V)T %%
X, act eff eff act So?
#(ny) = -~------ = —----- = mmmmmmemeeeo = - eff (47)
(£/v)~* (£/v)* (£/v)? x.* So?
eff act act act act

from which it can be seen that k,/¢#(n,) 1s the ratio which defines
the effective surface presented to flow for any actual particle
surface by means of

Eo® = Xy . So® (48)
eff #(ny) act
CONCLUSIONS

In spherical or near-spherical sands, k, is equal to @(n,), that is
k: = ¢(n;) = 4.94. That has been confirmed in thie present
analysie and is a result of the fact that spheres pack together
with an absence of interlocking. Strictly speaking, the value of
the #(n,) poroesity function will be 4.94 only at a porosity of
0.400, but it remains approximately equal to 4.94 over an extended
range of porosity either side of 0.400. That is why within the
range of porosities applicable to spherical packinge a Kozeny
constant value of @(n,) would be the most appropriate assumption in
the Kozeny equation

Historically, the intereet in trying to establish k, values
generally for varying particle shape has been to estimate in turn
the permeabilities for given porosities and absolute values of the
actual specific surface S, of the packed-bed material.

actual
However, 1t does appear that there is no practicable way to
determine k; values for particles of irregular shape and unknown
shape factor. This is because packings of particles having the
same specific surface and at the same porosity nevertheless
exhibit different values of permeability. The permeability of a
packing is unique to the particular shape of of the constituent
particles and the pore spaces they create, and it seems unlikely
that any way can be found to predict the Kozeny conetant in
advance for any packing material of unknown shape factor.

Given that X; can be asgegeed from image analysis or by other
meansg, then gince effective specific surface A-°-% ig easily
determined for XKnown permeability and porosity, effective specific
gurface can be used as a control for comparative purposeg, rather

21
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than the more problematical actual specific surface which ie so
difficult to estimate for irregular particles. The effective
specific surface can be determined exactly from permeability
teeting and offers an entirely accurate means of comparison
between different packings.

The use of effective specific surface means that the surface
mean diameter must be assessed ae accurately as possible and by
meang of a standard, conventional method of calculation, if
comparigon ig to be possible between the results of various
workers in this field. Work done by the author(5) rested upon the
Heywood approach to particle measurement and employed the Hatceh
and Choate equations to determine statistical average diameters
Thig procedure, or an equivalent standard procedure, must be used
to ensure true comparability.
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LIST OF NOTATIONS
(in order of appearance)

Dimensions
a diameter of equivalent sphere
in {dealized model packing m
Cy coefficlent for unit cell volume n.d
n pi n.d
n volume porosity n.qa
n' area porosity n.d
T porosity ratio [ = n' ] n.d
L L
L thickness of bed m
Le actual length of pore m
v Heywood volume coefficient n.d
q; gtatigtical mean volume (mase) diameter m
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2.0 extent of interlocking between
non-spherical particles n.d
m hydraulic radius m
ez constant in equation m® = cp.T.n.a® n.d
[ congtant in equation T = cg.n n.d
Ue actual velocity through pore m
Bec
u average veloceity of flow m
sec
ko constant defining pore shape n.4a
4 acceleration caused by force of gravity m
sec?
v kinematie viscosity of fluid (stoke) [ = z 1 m?
L » sec
v vigeosity of fluid (poise) kg
m. gec
» density of fluia kg
ms
H regultant driving head acrose bed thicknegs m
fLel® tortuosity n.d
L J
i hydraulle gradient ( = H/L ) n.d
eo overall shape coefficlent [ = ¢z(cy)? 1 n.d
L (ei)?’? |}
K, Kozeny constant [ kofLel? 1 n.d
L L} |
k Darcy coefficient of effective m
permeability ( = u/1 ) sec
£ Heywood surface coefficient n.d
Xs statistical surface mean
diameter ( = ¥ x°/ L x? ) (Heywood) m
T summation symbol
X statistical dlameter of particle
in a particulate system m
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el shape factor (Heywood) n.d
Lv]

@ denoteg 'function of'

#(n,) porosity function ( = 4.94 ) n.d

#(n) porosity function expressing effect

of change in porosity n.d
A (kv/g)-value for unit porosity function m?
Ao A-value for unit diameter-squared n.d
Seo gpecific surface of ‘effective' sphere m-1
eff
So specific surface of actual
act non-spherical particle m-1
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