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ABSTRACT 

This paper presents a revised form of the Kozeny equation for 
laminar fluid flow through packed beds in terms of particle shape 
factor and surface mean diameter. rather than specific surface. 
The equation is based upon a model of pore formation which takes 
into account the interlocking of irregular particles. It is 
concluded that for comparative purposes the 'effective' Specific 
surface is a quantity which can be derived exactly from 
permeability and porosity measurement. The effective specific 
surface affords a ready means of control in comparing one packing 
with another, provided that a standard, conventional method is 
adopted for the assessment of surface mean diameter. 

INTRODUCTION 

For well over forty years the accepted equation of fluid flow in 
permeametry in the laminar range has been the Kozeny-Carman(l,2) 
equation. 

Carman(3) and Dallavalle(4) supgested independently in 1938 
that the determination of specific surface should be carried out 
by means of permeability measurement. and by 1941 Carman had 
elaborated upon the appropriate methods for doing so. The 
importance of Kozeny-Carman in permeametry has been recognized in 
the literature, and in International Symposia on Particle Size 
Analysis, since that time. 



The drawbacks of the Kozeny-Carman equation have been 
appreciated from an early stage and discussed in a number of 
texts. One significant problem has been the failure of the 
equation to deal properly with flow through material departing 
radically from the spherical or near-spherical. It therefore 
fails to make accurate predictions of permeability for materials 
subject to interlocking rather than point contact. Another 
problem is Kozeny's use of the specific surface to describe 
material size. Clearly, it is possible for materials of the same 
'diameter' to have differing values of specific surface. 

In this paper, shape and diameter are separately identified. 
and hydraulic radius is developed with especial reference to the 
interlocking of particles. It is considered that the revised 
equation of flow worked out represents a more general and a more 
accurate description of the factors affecting hydraulic 
conductivity, and makes a clearer statement of the nature of flow 
in the laminar range. The most interesting conclusion to be drawn 
from the analysis is not only to confirm that the Kozeny constant 
is merely a consequence of the nature of the packing of the 
material, but also that it varies between different materials at 
the same porosity, even where they have identical shape factors 
and diameters and, therefore. identical specific surfaces. This 
makes prediction of the constant for particular porosity values in 
a given material an impossible task; the value of the constant is 
unique to the shape of the material and its own unique mode of 
packing. For this reason, it is a conclusion of the thesis(5) in 
which the new equation is derived that the determination of 
surface area for quality control purposes would be more soundly 
based on the 'effective' specific surface, as defined in this 
paper. 

The new equation proposed is analogous to the Kozeny equation 
but is considered to be more general in its concept and in its 
application. The new equation offers an explanation of the 
mechanism of flow through spherical and non-spherical particles. 
and suggests a theoretical basis for the approximate value of the 
Kozeny constant in spherical material over the range of porosities 
investigated. 

THE UNIT CELL AND POROSITY 

Introduction 

Equations so far developed to describe flow through packed porous 
beds do not include an effective parameter to account for the 
shape of the particle: the analysis which now follows results in 
an equation which takes the effect of particle shape into account 
as an integral part of the initial model of flow devised. 

Unit cell 

The failure or Slichter's(6) analysis diverted attention from his 
basic approach. In any investigation of the spatial relationshlpe 



Figure 1 Slichter mlnlmum pore cross section 



of  particle^ within a packed bed, however, it is still appropriate 
to start where he started - with the unit cell based on spherical 
arrays. Fig.1 shows the typical pore cross section investigated 
by Slichter. Clearly, the cross-section shape of pore tube to be 
observed in this diagram is that at the plane of minimum pore 
cross-section, called by Graton and Fraser(7) the throat plane. 
To describe the packings, for flow assumed to take place normal tc 
the cross-section of the lhroat plane (at the throat planes 
themselves), the ratios now described below are employed. 

Volume porosity 

It is possible to obtain the volume of the unit cell in terms of 
an equivalent sphere diameter. Let the diameter of the equivalent 
sphere be 'a'. The unit-cell volume is c,aS where c, is a 
coefficient varying according to the geometry of the cell. 
Following Slichter, and Graton and Fraser, it is clear that each 
cell. of whatever shape, must contain parts of a sphere which all 
together make up a unit sphere. Therefore, the total volume of the 
spheres contained in unit volume of the packing must be 

and t h i ~  quantity must equal 1-n where n is the porosity. so that 

for packings of spheres. 

Area porosi ty 

The area porosity n' is defined for any plane through the unit 
cell as the ratio of the pore area to the area of cross-section of 
the cell at that plane. 

Porosity ratio 

The porosity ratio is defined as the ratio of the area porosity 
for any chosen plane through the unit cell to the volume porosity 



Tortuosi ty 

In all cases, the thickness L is the distance between two faces of 
the unit cell and perpendicular to them. The tortuous length L, 1s 
con~idered to be the distance, inside the unit ccll, along the 
locus of the centroid of the pore cross-section between OD- throat 
plane and the next. The path described in this way by the 
centroid is assumed to conform with the shape of the surrounding 
spheres and to follow the shortest possible tortuous route from 
throat plane to succeeding throat plane. 

AN ORIGINAL ANALYSIS OF FLOW 

An idealized model packing 

It is argued that flow must be conditioned by the shape and area 
of the cross-section at the throat plane. Porosity is represented 
by equating the number of imaginary spheres of diameter 'a' in an 
idealized model packing to the number of irregular particles 
actually present in the packing. For unit volume of the packing. 
the following expression is obtained 

from which 

- 
where v and (qx) are the Heywood(8) volume coefficient, and the 
statistical mean volume diameter, respectively. 

In equation ( 4 ) ,  the number of spheres is l,/(c,a3). Clearly, 
the same number can be obtained either by maintaining c 1  constant 
and varying 'a', or by maintaining 'a' constant and varying cl. 
which is what was done in the previous section on spherical 
porosity. From now on, it is more convenient to represent any 
packed-bed material by a unit cell based on a constant value of 
c , .  On this basis, the concept underlying equation (5) is of 'a' 
as an arbitrary diameter of an imaginary sphere defined in terms 
of the mean volume diameter of the particles in the bed, and 
varying in accordance with equation (5) to describe porosity 
change. In equation (5). cl, v and (qx) are constant for a given 
material and c1 is constant for all materials. 
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Description of idealized cross section of pore 

The hydraulic radius can also be expressed in terms of 'a' and n. 
In order to justify a relationship, consider a unit-cell section 
based on the throat-plane cross-section area shown in Fig. 2. The 
section is idealized to represent the average cross-section which 
is regarded as being continuous throughout the bed. In order to 
account for a variation in porosity in non-spherical material, the 
imaginary model spheres of diameter 'a' are considered to be 
interlocked to a certain extent, the common length between 
contiguous particles being 2.a.a. For such a section, the argument 
then runs as follows 

height half unit cell 

half unit-cell cross-section area = Jz ae 
4 

side length of pore 

pore perimeter 

height of pore area 

pore area 

and this area must be given by 

so that 



Analysis of hydraulic radius 

The hydraulic radius is 

and 

where c, is a constant having the value 1/48. 

From equation ( 5 ) .  it can be seen that a reduction in 
porosity, n, results in a reduction in 'a'. This means that 
relatively lower porosities are represented in the model by 
smaller spheres packing together. It seems reasonable to suppose 
that the three-dimensional mechanism involved is such that the 
porosity ratio itself is proportional to porosity, that is to say 

T = constant . n (15)  

and that, therefore, pore area is a function of the square of the 
porosity. If c, is the constant in equation (15). then 

The Bame kind of relationship can be demonstrated for the 
Graton and Fraser Case 1 maximum concave-square cross-section, and 
since these sections are extreme forms it seems reasonable to take 



equation (16) as having general application with c, and c, varying 
with average cross-section shape. but assumed constant for any one 
packed-bed material. 

From equation (5). 

and if this value of at is substituted in equation (16) 

AN ORIGINAL EQUATION OF FLOW 

Substitution of hydraulic radius 
in basic capillary-tube equation 

Kozeny showed that the actual velocity through the pores up must be 
given by 

where u is the average velocity of flow and, from Poiseuille(9) 

where ko is a constant defining pore shape. g the acceleration 
caused by force of gravity. v the kinematic viscosity, and H the 
resultant driving head across the packed bed. Following Kozeny. 
it is now possible to expand equation (20) by substituting for mz 
from equation (18) to obtain 



In equation ( 1 9 ) .  Kozeny assumed that the area porosity 
equalled the volume porosity; that is, he assumed that the pore 
area took up all the available volume porosity n (thought of here 
as an area porosity). However, in the argument now being pursued. 
the area porosity n' must be substituted for the volume porosity n 
in the Kozeny statement. so that 

If the right-hand side of equation (22) is substituted in equation 
(21). then 

where k, is the Kozeny constant and c, is a coefficient 

which varies with particle shape and is constant for porosity 
change in the same material. From equation (23) 

where k is the coefficient of effective permeability derived from 
Darcy's(l0) law. 

Comparison with Kozeny equation 

IF the Kozeny equation is  written in terms of kv/$, then 



Values of (co/k,) can be derived by means of equation (24) and 
Values of (l/k,) from equation (25) for the same given shapes and 
porosities. From the two equations 

and if c, is substituted in equation (24) according to equation 
(26) then 

which is to equate the equation (24) to the Kozeny equation, with 
the shape factor quoted in reciprocal form for ease of 
calculation. The resulting general expression can be stated as 

where 

O(nl) = 1 and 0(n) = n* 
n. (1-n)"' (l-n)2'8 

It can be demonstrated that #(n,) is sensibly constant over a 
large range in porosity. It has a value which is exactly 4.94 at 
a porosity of 0.400, while being within 1% of this value for a 
range of porosity from 0.375 to 0.480. and still within 5% for a 
range of porosity from 0.330 to 0.530. In other words. over the 
range of porosity regarded as applicable to formations of natural 
sands, C(nl) can be regarded as constant. 



Figure 3 Plot of - n+ 
g (1-n)"' 



CONFIRMATION OF ANALYSIS 
BY TESTING ON PUBLISHED DATA 

Both Coulson(l1) and Wyllie and Gregory(l2) have published 
permeability and porosity data for beds of regular particles of 
known shape. The porosity function n4/(l-n)L'a can be tested for 
the Coulson data by plotting kv/g as ordinate against n*/(l-n)z'a 
as abscissa. In general, the plots, an example of which is shown 
in Fig.3. are straight lines. This relationship is further 
corroborated by plots of the Wyllie and Gregory data with similar 
results. 

Original equation and xSL 

The next stage in verification is to show that kv/g is proportional 
to the square of the particle size. To do this. it is necessary 
to define a quantity A which is the k-value for unit porosity 

P 
function. For if 

then 

In considering the right-hand side of this expression, it can 
be seen that, for material of the same shape, a cube for example, 
the material will have a constant shape factor (f/v)-'. although 
it may have different size fractions with diameters xs varying 
with size. The function b(nl) is sensibly constant and it will be 
assumed for the purpose of this exercise that k, can be regarded 
as constant for a range of diameter squared x,* in a material of 
the same shape and all at the same porosity. The forepoing has 
been underlined to emphasize the importance of the conditions 
under which the test must be applied. 

Then. for constant ~(n,). (f/v)-' and k, 

and straight-line plots result from plots of A - xo' for materials 
of the same shape at the same porosity. The surface mean diameter 
xp is assessed by the methods of Heywood, using the equations 



F l p u r e  4 P l o t  of  A - x n L  f o r  spheres 



derived by Hatch and Choate(l3). 

Spheres present a little difficulty in that, although 
(f,/v)-"-values are common, porosity variation is limited in the 
Coulson series. Only single porosities were investigated in three 
sizes and only two porosities in the other two. The Wyllie and 
Gregory series for a single sphere is better with four values 
giving excellent correlation for the (kv/g) - 0(n) plot. This 
makes it possible to compare two sizes of Coulson sphere at a 
porosity of 0.393. for kv/g values actually observed, with one 
derived value of kv,/g from Coulson and one from Wyllie and Gregorq 
at tnat porosity using the appropriate repression equations from 
plots of kv/$ - n. For the values detailed in Table 1, which have 
been calculated for a porosity of 0.393. A as ordinate is plotted 

TABLE 1 

VALUES OF A AND xgZ FOR SPHERES 

kv - 
Sphere g A X a xnZ 

x10000 x10000 

Coulson 2 3.72907 112.09 0.635 0.40323 

Coulson 3 1.52954 45.97 0.397 0.15761 

Coul eon 4 0.90843 27.30 0.317 0.10049 

Wyllie and 
Gregory 0.87040 

against xpZ as abscis6a in Fig.4. The regression is shown on the 
figure. There is a high degree of correlation. 

Now, if the sphere plot, using the same data detailed In 
Table 1, is forced through the origin as theory demands. the 
result is most interesting. The plot of Fig.4 shows no change. 
but the regression is changed slightly. Now, the slope of the 
plot through the origin is 0.027775. which is exactly the value of 
(f,/v)-" for a sphere. Therefore, from equation (30) 

1 = @(n,) x (f/v) - "  
slope of plot 



that is to say, k, is demonstrably equal to 0(n,), as theory 
demands should be the case for a spherical particle. This is a 
highly encouraging result and explains why so many workers have 
adopted a value of the order of 4.94  for k, in spherical arrays at 
or close to a porosity of 0.400. 

Similar results are obtained for a series of plots at 
different porosity values for other shapes. The evidence is that 
for whatever shape there is a linear relationship through the 
origin of the form 

A = constant . xSZ 
where the constant is 

and this, of course, is fully in accord with hydraulic-radius 
theory, in which permeability is regarded as being proportional to 
the reciprocal square of the specific surface. 

Permeability and the shape factor 

The final stage in verification is to relate permeability to the 
shape factor for the material being investigated. To do this, it 
is necessary to define a quantity A. which is the A-value for unit 
diameter-squared. For, if 

then 

and 

If Aokl is plotted as ordinate against (f/v)-' as abscissa, then 
the slope of the plot must be given by the @(nl)-value for the 
particular porosity value being investigated. 



Again using values calculated from the Coulson, and Wyllie 
and Gregory, data. Aokt and (f,/v)-' have been plotted with Aok, as 
ordinate and (f,/v)-' as abscissa for a single porosity value in 
Fig.5. Similar PeeUltE are obtained throughout a series of plots 
over a range of porosity from 0.32 to 0.50. For each value of 
porosity there is a linear relationship through the origin of the 
form 

A, . k, = constant . (f./v)-' 

where the constant is the appropriate value of 0(n,) for the 
porosi ty involved. 

FLOW MECHANISM AND SPECIFIC SURFACE 

Nature of flow mechanism 

The interesting thing to be noted from the model of flow now fully 
defined is that, for any particular porosity value, a range of k, 
values will satisfy the framework of relationships established for 
A - x,' and Ao.kl - (f/v)-' plots. For each porosity value in 
respect of a given shape. A,. kl is easily determined. It is the 
value of the porosity function @(I?,) multiplied by the reciprocal 
square of the Shape factor for the particle. But Au and k, are 
interdependent and A,, will assume different values for differing 
k,, while preserving an identical value for Au.kl which will 
remain the same as k, varies. 

So, it is possible to think in terms of two or more particles 
having identical shape factors and the same diameter, therefore 
the same specific surface, but with different k, values for the 
same porosity in each material, and consequently differing 
permeabilities for that same porosity. It seems, in theory, that 
even though materials can have the same specific surface while 
having slightly different shapes. the slightest variation in shape 
causes the materials to pack together in ways which create 
different packing formations so that the configuration of the 
pores is not the same. This difference in configuration is 
reflected in the variation of k,-values capable of satisfying all 
the basic relationships defined. In these circumstances, it would 
be most unlikely that it could be possible to predict in advance 
the value of k, applying to a particular shape of unknown shape 
factor for a given porosity. 

It can be said. then, that it is possible to demonstrate for 
known shapes the relationships which must obtain between the 
parameters of the main equation (28). but that no unique 
relationship seems attainable for the estimation of a k, value 
applicable to a given particular shape. 



The evidence from an examination of the data provided by 
Coulson, and Wyllie and Gregory, for regular particles clearly 
 upp ports a theoretical model framework which can be summarized as 
follows: - 

1 Main equation: 

2 For the same shape at the same porosity: 

3 For unit diameter of material: 

and 

with plots of A,.kl - (f/v)" through the origin. This 
relationship holds for the whole range of shapes and for the whole 
range of porosities exhibited by single-value or multi-value 
plots. 

So. we may take the theory and the range of equations (37) to 
(40) as an accurate expression of the mechanism of flow through an 
extended range of Ehapes and sizes of packed-bed material over an 
extended range of porosf ty. 

The kl/O(nl) ratio 

The K z-:ly constant kl i~ the numerator of the square of what may 
be termed an interlocking factor, and the denominator is @(nil. In 
the case of a sphere, it has been clearly demonstrated that 
k, = Ql!n,) = 4.94 cvcr a limited range, and so kl,/@(nl) is unity. In 
which cepe 
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kv = 1 . 0 . x  = 1 . @(n) - - ( 4 1  3 
0 LvJ So '  

and this is an expression which can be taken to hold for a sphere 
which is equivalent to a particle with a shape factor f/v and a 
surface mean diameter x , ,  but which is not spherical in shape. 
This 'effective' S o  will be referred to as S o  

effective 
From equation (41) 

S o '  = a(n) = A - I  
effective r e 1  

Lg 1 

and SO 

S 0  = A - 0 . '  

effective 

The diameter of the effective sphere must be 

x s = 5 
effective A - 0 . 0  

Again, from equations (39) and ( 4 1 ) .  in which x, is the 
surface mean diameter of the actual particle 

A~ = A = r f l  -' = slope of A  - x S z  plot (45) 
X C '  Lvl 
act eff 

and since, from equations (39) and (45) 

O(nr) . T f l - '  = A o  = f f l - '  

k l  LvJ Lvl 
act eff 

then 



(f/v) -' ( f / ~ ) ~  (P,/V)Z xeZ 
3 act eff eff act Soz 
@(n,) = ------- = ------ = ------------ = -eff (47) 

(f/v) -z (f/vIZ (f,'~)' x s Z  S 0' 
eff act act act act 

from which it can be seen that kl/@(nl) is the ratio which defines 
the effective surface presented to flow for any actual particle 
surface by means of 

So2 = 2 . SoZ 
ef f O(n1) act 

CONCLUSIONS 

In spherical or neap-spherical sands, k, is equal to @(n,), that is 
kl = @(nil = 4.94. That has been confirmed in this present 
analysis and is a result of the fact that spheres pack together 
with an absence of interlocking. Strictly speaking. the value of 
the @(n,) porosity function will be 4.94 only at a porosity of 
0.400, but it remains approximately equal to 4.94 over an extended 
range of porosity either side of 0.400. That is why within the 
range of porosities applicable to spherical packinge a Kozeny 
constant value of @(n,) would be the most appropriate assumption in 
the Kozeny equation 

Historically, the interest in trying to establish 8 ,  values 
generally for varying particle shape has been to estimate in turn 
the permeabilities for given porosities and absolute values of the 
actual specific surface So of the packed-bed material. 

actual 
However, it does appear that there is no practicable way to 
determine k, values for particles of irregular shape and unknown 
shape factor. This is because packinge of particles having the 
same specific surface and at the same porosity nevertheless 
exhibit different values of permeability. The permeability of a 
packing is unique to the particular shape of of the constituent 
particles and the pore spaces they create, and it seems unlikely 
that any way can be found to predict the Kozeny constant in 
advance for any packing material of unknown shape factor. 

Given that x, can be assessed from image analysis or by other 
means, then since effective specific surface A - O - O  is easily 
determined for Known permeability and porosity, effective specific 
surface can be used as a control POP comparative purposes, rather 



than the more problematical actual specific surface which is so 
difficult to estimate for irregular particles. The effective 
specific surface can be determined exactly from permeability 
testing and offers an entirely accurate means of comparison 
between aifferent packings. 

The use of effective specific surface means that the surface 
mean diameter must be assessed as accurately as possible and by 
means of a standard, conventional method of calculation, if 
comparison is to be possible between the results of various 
workers in this field. Work done by the author(5) rested upon the 
Heywood approach to particle measurement and employed the Hatch 
and Choate equations to determine statistical average diameters. 
This procedure, or an equivalent standard procedure, must 5e used 
to ensure true comparability. 
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LIST OF NOTATIONS 
(in order of appearance) 

diameter of equivalent sphere 
in idealized model packing 

coefficient for unit cell volume 

P i 

volume porosity 

area porosity 

porosity ratio f = 2' 1 
L n l  

thickness of bed 

actual length of pore 

Heywood volume coefficient 

statistical mean volume (mass) diameter 



2.a extent of interlocking between 
non-spherical particles 

m hydraulic radius 

Cz constant in equation mz = co.~.n.aZ 

Cp constant in equation T = ca.n 

u, actual velocity through pore 

u average velocity of flow 

k~ constant defining pore shape 

g acceleration caused by force of gravity 

v kinematic viscosity of fluid (stoke) r = g 1 
L n J  

.u viscosity of fluid (poise) 

R) density of fluid 

H resultant driving head across bed thickness 

i hydraulic gradient ( = H/L ) 

co overall shape coefficient r = cZ(c,)' 1 
L (C,)~"J 

k, Kozenyconstant r k o f ~ a l z l  
1 LLJ 1 

k Darcy coefficient of effective 
permeability ( = u/i ) 

f Heywood surface coefficient 

x, stat1 stical surface mean 
diameter ( = 1 xa/ 1 x z  ) (Heywood) 

summation symbol 

?!! 
sec 

!!! 
sec 

!!! 
sec 

x statistical diameter of particle 
in a particulate system 



r f l  shape factor (Heywood) 
LvJ 

S 0 
eff 

S 0 
act 

denotes 'function of' 

porosity function ( - 4.94 ) 

porosity function expressing effect 
of change in porosity 

(kv/g)-value for unit porosity function 

A-value for unit diameter-squared 

specific surface of 'effective' sphere 

specific surface of actual 
non-spherical particle 

REFERENCES 

KOZENY, J.S. ,Uber kapillare leitung des wassers im boden. 
Sitzb. Akad. Wiss. Wein.Math-naturw. K1.. 
136(~bt.IIa),271-306.1927 

CARMAN.P.C. ,Fluid flow through granular beds. 
Trans. Inst. Chem. Eng., 15,150,1937 

CARMAN.P.C. ,The determination of the specific surface 
of powders. I. J. Soc.Chem. Ind.. 57.225.1938 

DALLAVALLE, J. M. , Surface area in packed columns, 
Chem. & Met. Eng.. 45,688-691.1938 

BISH,G.M.,Laminar fluid flow through unconsolidated beds of 
spherical and non-spherical particles. Ph. D. Thesia, 
University of Nott ingham, 1987 

s ~ ~ c ~ ~ ~ ~ . ~ . s . , T h e o r e t i c a l  investigation of the motion of 
ground waters. U.S.Geol.Surv. ,lgth Ann.Rept. .Pt. 11,301,189P 

GRATON. L. C., and FRASER, H. J.. Systematic packing of spheres; 
with particular relation to porosity and permeabillty, 
Journal of Geology,xliii,785,1935 

HEWJOD.H..Calculation of the specific surface 
of a powder. Proc. Inst. Mech. Eng. ,125,383,1933 



(9) POISEUILLE. J.. Recherches experimentales sur le 
mouvement des liquides dans lee tubes de trbs-petit 
diamstre. Inst.de France,Acad.de Sci. .M&moires 
preaentee par divers savants.9.433-543,1846 

(10) DARCY,H.G.P.,Les fontaines publique de la ville de Dijon 
Victor Dalmont. Paris, 1856 

(11 ) COULSON, J. M. .The flow of fluids through granular beds: 
effect of particle shape and voids in streamline flow, 
Trans. Inet. Chem. Eng., 27,237,1949 

(12) WYLLIE.M.R.J..and GREGORY,A.R.,Effect of porosity and 
particle shape on Kozeny-Carman constants, 
In&. Eng. Chem. .47.1379.1955 

(13) HATCH.T., and CHOATE. S. P.. Statistical description of the 
size properties of non-uniform particulate substances, 
J.Franklin Inst. ,207,369,1929 




