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Numerical models are required to mai<e calculations of the distributions 
of potential and the flows Into eKca~ations for most mining related 
groundwater flow problems. The fonnulation of such problems us:ng the 
boundary integral equ.tion method ~nd the lmp!ent&tion of this for
mulation in a computer prograr.,, GFLOW, ace dei{:r!b~d. This program is 
designed to soive problems involving plane, unconfined fie~ in homo
geneous rock masses having anisotropic permeabiiitles determined, for 
example, by flow through major joint set~. An lteratlv~ procedure 15 
developed for determining the location of the phreatic s•;rface in the 
steady state condition. Although boundary elements with quadratic 
functional variation and ;;odvanced numerical procedures are used, GFLO',.J 
has been designed so that lt can be us~d with computer systems ~s small 
as a 6l!K byte n>lcroprocenor, g!ven a hard disc on which to hold 
scratch files. The solutio~ l$ given for an illustrative problem 
lnvolvir.g flow through"" anisotropic rock roan into a single horse
shoe shaped tun~el. 

INTRODUCTION 

In feasibility and planning studies for mining operations in wat~r
bearlng ground, It !s Important to be ~ble to make predictions of the 
likely rates of groundwater inflow inro the mining exc~vations ~nd of 
the positions of the phreatic surface at various stages of mining. Such 
predictions permit estimates to be lllltde of the costs of drainin·g the 
mine, the c~paclties of the pumping equipment required, the likely 
extent of cper~tion~l difficulties caused by water inflows, and the 
effects of drawdown on surface Installation$ and groundwater supplies. 

In order to be able to make the5e predictions, knowledge is required of 
the regional geohydrology, including Initial piezometric levels and re
charge sources, the geological structure and hydraulic characteristics 
of the rock mas\ surrounding the mine, end the geometry of the pro
posed excavations. Heat Importantly, a 1111thod of >~n~:~sis Is required. 
Many occurrence' of water In mines are extremely difficult to predict 
and an•lyse. These Include Inrushes from caverns in c~rbonate rocks 
or from lsol•ted po'kets of ~ter~stor!ng rock and flows through 
conduits or from sources that are et least partially ~n-made Ll]. 295 
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In general, however, flows wi II be through the primary permeabi I i ty of 
the rock itself, throuqh the secondary pt•rn••,1bility dew to the joints in 
the rock mass, or through major geological conduits such as faults and 
dykes. Inflows through, or control led by, major geological conduits 
have caused serious mining problems in the past [l,Zl. Provided their 
e•istence, hydraulic characteristics and recharge sources can be pre
determined. flow throu~h such features can be analysed using the 
finite clement met '>ad l3J, for example. 

Excluding special features such as those referred to above, the seepage 
of water in a rock mass wil I be typically through the joints or dis
continuities rather than through the blocks of intact rock ~4]. Only in 
very porous rocks, such as some sandstones and I imestones, wi II the 
primary permeability of the rock be dominant. On the scale of a mine, 
the joints will be very numerous, and so it wil I be impracticable to 
deterHtine their distributions and individual characteristics and to 
consider the flow through each of them in the analysis. If the joint 
spacing is small compared with the dimensions of the problem domain, it 
is acceptable to treat the rock mass as an equivalent continuum with 
permeabilities such that, io the large, the hydraulic characteristics of 
the continuum and the jointed rock mass are equivalent[4,SJ. Generally 
the permeability of the equivalent continuum will be anisotropic and it 
may be necessary to treat the rock mass as being composed of a number 
of regions each with different characteristics. In the analysis 
presented herein, the rock mass may be anisotropic but is considered 
homogeneous. 

To calculate the variation of potential through the continuum and the 
flow across any part of its boundary, it is necessary to solve a boundary 
value problem. For some simple problems, generally involving cylindrical 
excavations, closed-form solutions have been obtained for confined and 
unconfined flows [51. These solutions have been adapted to give simple, 
and approximate, predictions of inflows into underground excavations 
[6, 7j. In general, closed-form solutions can only be obtained for 
cases involving I inear flow laws .and excavation geometries and boundary 
conditions which can be described by simple functions. In other cases, 
numerical methods must be used. 

NUH£RICAL METHODS 

Boundary value problems of groundwater flow are usually solved by finite 
difference or finite element methodsr8.9l. in which it is necessary to 
define a grid or mesh throughout the region of interest, and to construct 
and solve a system of simultaneous equations in terms of unkno>llSassociated 
with node points distributed both inside the rock mass and on its surface. 
If there is a phreatic surface, this system must be solved many times 
during an iterative calculation of the location of that surface. Since 
the order of the system is large, computing costs are high. In addition, 
the governing partial differential equation is not exactly satisfied 
at each point of the continuum, and so the solution obtained corresponds 
to a residual distribution of sources and sinks throughout the rock mass. 

Boundary integral methods are alternatives to finite differences and fin
ite elements, in which the partial differential equation is transformed 
to a boundary integral equation[lol. To solve the integral equation, a 
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mesh of elements is defined on the surface only of the region of Interest, 
and a system of equations in terms of unknowns associated with nodes on 
the surface only is constructed and solved. The system of simultaneous 
equations is smaller, and the solution obtained satisfies exactly the 
governing partial differential equation at every point of the continuum. 

The Integral equation 

Let us consider the three dimensional problem. Let ~(y) and B(y) be 
arbitrary twice continuously differentiable potential fields, and let 
Vi(~) and ~i(S) be the corresponding fluid velocities. Then by making 
suitable substitutions In the dlvergen.ce theorem[lqj. it can be shown 
that 

1 { ~(y) ~;~s (a) - ~(y) a;~!a) ]dVy- I! ~(y) "s(B) - a(y) Vs(a)}. 

v s 
(1) 

where S is the surface of the region V, and n5 (y) Is the unit outward 
normal to Sat the pointy. Equation (1) Is analogous to Betti's 
reciprocal theorem of elesticlty[lo], and, for en isotropic continuum 
of unit permeability, reduces to Green's symmetric Identity. let us 
take a(y) to be the solution 11(y) of the boundary value problem, and let 
S(y) be the potential U(x,y) which would arise in lin infinite region if 
there were e unit source of fluid at the point x on S. In order to 
satisfy the conditions of differentiability, let us exclude the sing
ularity of U(x,y) at x by writing equation (1) for the region V • v(x,E) 
where v(x,£) Is that pert of V which lies within e sphere of radius< 
centred at x (see Fig.l). T!>en because u(y) and IJ(x,y) satisfy the 
governing partial differential equation everywhere in V- v(x,<) the 
~lume Integral vanishes end 

J ( u(y) v5 (U) - U(»<,yl v5 (u)J n5 (y) dSy • 0 

S-S(x,c) + s(x,t) 

(2) 

where (see Fig.l) S(x,£) Is that part of S which lies within the sphere 
of radius £ and s(»<,d is that pert of the surface of the sphere wlj.ic~ 
lies within V. Now let£+ 0. It can be shown that, in the limitllOJ, 

c(»<) u(x) + /T(x,y) u(y)dSy • ju(x,y)t(y)dSy (3) 

s s 
where t(y) end T(x,y) are the inflows across S at y due to the potential 
fields u(y) and U(x,y), end c(x) Is a known function of x. If the tan~ent 
plane is continuous at x, c(x) • ;. Equation (3) is the boundary 
integral equation of the direct formulation. If either u(y) or t(y) is 
known at every point y of S, then this equation can be solved for which
ever of u(y) and t(y) Is unknown. If results are required •t points x 
In V, they can then be computed using the results 

u(x) • Ju(x,y)t(y)dSy - I T(x,y)u(y)dSy (It) 

s s 
vl(x)• J Dl(x,y)t(y)dSy Jsj(x,y)u(y)dSy (5) 

s s 
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which, like tne bou,.,.dary integral equation, are derived from equation \'l. 

For the plane problem, tl'le aMlys!s is the '"me as for thre-e dimrensions. 
except In that the region v(~,c) Is taken to be part of a disc of radiu; 
r rather than of a sphere. for the plane problem In wh!ch the principal 
directicms are parallel with the coordinate ·ll><>l!S, 

U(x,y)• 2wlk~; log .l. 
p 

'( ) (x$-nl n.:s\xl 1 x9y • 
z,P2 ~ 

(6) 

where k; are permeal:dl itln, "ll -~nd Ys ue the coordinate$ of t~e point-_ 
x and y, n 5 ()d l s the un l t out.w11rd normal to S ~t 'f, and 

In equation (5) 
0; (x,y) -k 1 'liXi 

" -x~ ~T 

{ U(><,y) j 

(T(~.y) l 

(7) 

Equilltloos (3), {4) and (5) are valid !f Sis uken to be the boundary 
that p.art of the rock m.an which is saturated, thh being the rock beL 
the phrel!tic surface. The location of tne phreatic surface is not kn<>t~n 
In advance, and so the solution of a 11roble"' of groundwati!!r flow ~~ an 
itH.atlve process. One fl'lllthod [lO,IlJ Is to solw; equation (3} on the 
.assumption th.at the roc~ Is s.atur.ated everywhere, compute a first 
est!m.ate of the phreatic surf.ace (e.g. the surface on which potential 
equ.als altitude), sol\111! equ.ation (3) for the rock -n below that 
turface, compute a second estimate and so on until changes •~ the 
computed loe&tion of the phreatic !urf.ace are suff!clently small, The 
repeated eqUiitlon solution Is expen s lve; worse, the algorltnm Is not 
robust bec•use If the computed phreatic surface Intersects some other 
p.art of the boundary S, ~~ch .as the crown of • tunnel, then the 
Integral equ~tlon ls no longer soluble. An .altern~tlve iteretlve methc 
In which the l:>oundary S ckM!~ not move fr0111 lt5 lnltlel pos!tlW~ h t~,.,. 
fore proposed here. 

let us take S to be the boundary of tho entire mast of rock under con
sideration, Including rock that ~y be dry, and for the purpose of 
writing equ.ation (3) auppose th.at over the part sl of S which may be~~ 
or dry, Inflow t(y) Is known and potentl.al u(y) unknown. let u(n)(y) 
and t\n)(y) be the nth Iterated vej~s of potential and Inflow at y. 
The Iteration li begun by t•kl~g t~~j to the ~ero on s1, and solving 
equ.atlon (3). let us denote by $d n that ~rt of s 1 on whlch(u)n (y) 
Is less th.an •ltltude, end by Svln) the ~••t of s 1. Below Sd n, the 
nth !ter.ated phreatic surf.ace Is takon to be the surface on which 
comput<!ld potent!&! equah .altitude. Durlnlj tne lterllti()?, ~IM! fol h)Wl;,; .. 
adjUitmGnt5 li!Y<l< ~ tO inflow on Sl. At Ill point y Ofl st•l)below wh)<;'' 
there It .a pol "t on tha (n-l) th her;;~ted phreiH le surf~ce, 

t1"l(y) a t(n-l~)·k~(n·l)(y) (9) 
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where 5 (n-l)(y) is the computed inflow across the (n-l)th it<rrated 
phreatic su~~!1T at the point below y, and k is a relaxation factor. 
For y on Sw • 

( 10) 

{n-1) · whereM(y) are the adju5tmentl to lnflow(on Jw that would be required 
to 1et potential equat fo altitude on Sw n-l . The Iteration Is ter
minated when Inflow 1 " (y) acro11 t~)phreatic surface, and differences 
between potential and altitude on Sw(n , are sufficiently small. 

Numerical analysis 

Let us represent the boundary S by p elements Sb, each with three nodes 
(see Flg.2). Let XJ(b,c) u(b,c) and t{b,c) be cartesian coordinates of, 
and potential and inflow at, node c of element S\1. Then the coordinates 
of, and potential and inflow at, an arbitrary po•nt of element Sb are 
given in ter1111 of the shape functions NC(C} of the Intrinsic coordinate 
(by 

3 
XJ (b,c)• t NC(t)x; {b,c) 

eel 
3 

u(b,c) • I NC(t)u (b,c) (II) 
c•J 

3 
NC((}t t(b,c) • t (b,c) 

c•l 

where l1ol 
N1 {t) • t t(C+l) 

N2 (t} • 1- c2 (12) 

Nl(~) • t t(t-ll 

and c varies from -1 to +1. Let there be a total of q nodes xa on S, 
the number of node c of element Sb being d{b,c). Then a system of 
simultaneous equations In ter1111 of potential and Inflow at these nodes, 
approximating to the boundary Integral equation, may be written by 
taking the point x of equation {3) to be loceted at each of tne q 
nodes In turn and substituting the parameterlc representations of 
equation {II): 

p 3 u(xd{b,c)} /T{xa,y(())Nc(~)J(~) c{xa)u(xa) + t t d~ 
b•l c•l 

sb 
p 3 

Ju{xa,y{()) . t E t(b,c) NC(~)J(~) d~ ( 13) 
b•l c•l 

Sb 

where J {t) Is the jacobian ds/df; where s • arc length, end the super
script a renges fr~ I to q. The Integrals of kernel-shape function 
products appearing In equation (13) may be evaluated using Gaussian 
quadrature formulae [10], and known values of potential end Inflow 
substituted to yield a system of q simultaneous equations In terms of 
q unknown nodal values, one per node. Where potential Is given on 
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00 

both elements adjacent to a corner of the region under consideration, 
certain approximations must be made to reduce the number of unknowns 
associated with the node at the corner to one, but the resulting loss of 
accuracy Is negligible except near the corner. 

At the nth iteration, let us rearrange the numbering of the nodes so 
that nodes iijsi~' s' and on s~n-J are numbered from I to r, nodes inside 
s 1 and on sdln-IJ are numbered r+l to s, and nodes inside S-5 1 or on the 
boundary between s1 and s-s1 are numbered from s+l to q. Then equation 

(13) may bre re-written J- (n)~ 
A,, Al2 Ai3 I Uw ' 

I (n)j 
A21 A22 A23 lud 

All A32 A33 f(n) 

813 [t~n). 
823 t~n) 

833 g 

(lit) 

where A and 8 are matricel ~f known coefficients (Aij and Bij being 
sub-matricesl, ~n) and t~nl are potential and inflow at nodes I t~ r, 
udtn) and tdlnlare potential and inflow at nodes r+l to s, and f(nland g 
a!y unknown and known parameters at nodes s+l to q. Premultlplylng by 
A 

(n)] 
Uw 

~n) 

;(n) 
( 15) 

where C ·A- 18. At nodes I to r, t~n) is given by equation (10), In which 
6t(y) is the adjustment !Y)Inflow on S~n-J) required to set potential 
equal to altitude on ~n -. Let 6tw be the vector of adjustments at 
nodes I to r. Then 

[

ell C12 C1~ ttJ l6uw1 C21 C22 C23 o • 6ud 

C31 C32 c33 o 6f 

where 6Uw • -(~n-J) - altitude) at nodes I to r. _, 
6tw • C11 6Uw 

(16) 

Then 

( 17) 

At nodes r+l to s, the point at which u(n-llxl equals altitude below 
each node is located by a Newton-Raphson iteration in which equations 
(It) and (5) are used to compute potential and flow. Equation (It) is 
then used to determine(th~)slope of the phreatic 1 s~rface, and then to 
calculate the Inflows n-l across it, so that tdnl(y) can be calculated 
according to equation (9). 

The procedure, then, is in principle as 

I) set tw(l) • d'l • 0 and compute 
to equation 

follows: 
(J) (I) 

Uw • Ud 
(15) 

and f(l} according 
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2) for n • 2,3,4 ... a) W"'l'Ute 6tw from equ~tion (17), tn"n t!"lrrom 
equation (10) 

b) locate the {n·l)th phreatic surfa7e)by N~wton
Raphson iteration. then compute tJ" from 
equation (9). 

c) compute u~"! u~n)and f(n)according to equation 
(!S). 

3) termlnllte tM Iteration when s<n-lland 6Uw are accept•bly ••mll. 

I t'!i>lEMENTi\T I 011 

The algorithm described In the pr.,cedlng •~ction is lmpl~'"""t"d in 
program GFLOW, this being • progr.-m designed p,i.,..rlly &• • tuchlng and 
research facility, rather th•n a• • ~•ns o! •olving ~ractlcal problem• 
as efficiently .OS po5slble. It is for th•H ru-,on that ooundary 
elements w~th qusdratic fyncs. ion9i ~ari§tlo~ ~re tho$~n in1tead of 
Hermitian cubic cle..,nts ll2.]. Til<! logic of ~FlOW Is furth"r 
simp! ifilld by taldng tM sa'"" order of i>aus.lan quad,"ature formula 
for a1l tadements ilnd pesitlons of the first arglH'ftEr'lt of the kernelt 
rather th~n v~ryin9 the orcler a~cording to the ut!Nted '"Pldity or 
variation of thf; lntegrfmd [10]. ft<li!§!c fEetures of ea:.ri ier program§ for 
e1•stostatit ~nalysis are ~ver ret~in~d: about half th~ code is pr~~ 
processing, giv!ng the user c.o~T~plete freedo,~ of node ~~~d eleffll1fnt 
numbering {th-e j:;?Jttitio!1ing d<!:s.cdbed in thoe preceding section i~ 
notional), conii~rab1e freedom of order of present&tion of input data~ 
automatic data generation faciliUe5 and re~:dily crnnpr~hen\ible error 
messages; there is no known wt;y of causing abnormal terfl'dnation of 
execution other thar. by prnvlding insufficient s·,.stem resources; and 
the overiay structure &nd extenof(.ive use of scratc~ files allows thf: 
program to be rur. on smai l systefii'S. GflOW solves problems In !;lflilch the 
boundary i 3 '"presented by up to 100 ele...,nts (ord~r q of •Mtr1 • C 0f 
equation (15) up to 200) In l6K words of C!lC central "''"'"''Y (l •.onl m 

60 bits), and could be converted to solve probl~ms of nearly that size 
on a 64K byte microprocessor, given a hard disc on which to hold 
scratch fi leo. A simp I i fled flow chart Is shown in Fig.), and conter.ts 
of scratch files are ~~rised in Table t. 

From Fig. 3 It may be seen that Integrals of kernel-shape function 
products appearing in equation (!3) •re evaluated only once. No 
matrix Inversion! are carried out, it being more economical to 
f•ctorise into lower and upper triangul•r fuatrices The ""itrlx A of 
equotlon (14) is constructed and fac!orised only once. The matrix C11 of equation (16) i• generally much smaller than the matrix A, so the 
cost of constructing and factorising it once during each iteration i• 
usually insignificant. The most expen>ive operation Is the Newton
Raphson lter•tion for the phreatic surface performed once per iter&tion. 
To reduce the cost of this iteration, the location of the (n-l)th 
phreatic surface is taken as the initial estimate ~n locating the 
nth surface. For interior points x near S, substitution of the 
appropriate par•metric representations and use of Gaussian quadrature 
formulae in equations (4) and (5) do~• not give •ccurate result>; 
therefore, when u(x) and vi (x) are required for a point x near S, their 
values at a point further from S are calculated and the desired results 
obtained by linear interpolation between tnat point and the nearest 
point to x on S. This procedure incurs the inconvenience and overhead 
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J02 

of 1ocating the nearest surfac.e point to x, but the routines developed 
for this purpose arE rei i~ble 5nd of efficiency such that the overhe~d 
Is s""'ll. In CF'LOW, lnterpo;>la!io~ Is urrled out if xIs nearer to S 
than stoout 0. 7 tilftlls the length o'f the ne11rest boundary e~e"'fnt. If 
tl'le orden of G.lusslen formul.me were ct.<uen according to e•tlmated 
rapidity of variatloo of tl>s l.uegrend [10], tl'len thl• distance, and 
with It the errors !ncurr<td by ll""'ar lnt.,rpol,.tlon, could"" redu.:ed. 

Co~slder an !l!xph:tr&Jtion t~~l"lne1 with a horse-shoe shaped crost.-sec.t.ion~ 
,.xc~\'at~d In a je;inted rock ma.s and continuously drained by p!J>'O!ling 
(see figs. ~and Sl. fhe tul'lnel Is ...., "Ide and ''"high, and it• floor 
is 80m below groufid level. There !1 recharge at ground level •t dis· 
tanee• greater than 400m froM the centreli~ of I~ tun~l. A IOOOrn ~ 
300.. crou·"•ctlon of rock Is ood<!lhtd, th<l outer ~und~ry being,.,_ 
presented by 16 el.,...nts "'""' that of the tunnel by 12M •""""' in Figs. 
~and 5. There are vertical and horl•ontal joint sets, •u~h th~t the 
permeabilities of the equivalent contlnuUOI are 5.2 x 10-'m/sec .J!nd 
}.7& x IQ- 5.,;s.,c In the \18rtlcal end horizontal dir11ctions rup<!ctl.,..,ly. 
The <OOiputed lnfl<IW, 10fter lO Iterations, io 0.0039m1/•H 1>'1' metre run 
of tunnel. A• ~y be ~een from Figs. ~ and 5, the ~hreAtic $urf~ce is 
cOP.Iputed to dr<~~w do>tn to tile crown of thi!> tunM I. 

!n this example. cou>tergenc.e of the iteration w.s slow bec•use at points 
on the estimated phreatic surface near the tunnel, i•rge adju,tme~ts 
'"~inflow ~t ground leY<I!I ...,r., required to zerolse the f!ow ,ln·ll(y) 
(•ee eqn (5)) ~cro•s the e•tlmated phrea~ic ourf&'-e. It Is int~nded to 
modify the ~t'Br~ttl<!n 50 that adjustments of inflow at ?'H')~es on 5' are 
tomputerJ b·f §01vlng a system of simultaneous equations of order s (see 
oqn )'~!!· rat~er then by solving a •Y•Sem 9f order r for ~dju•tments 
on s~n-, and computing ~dju$tmonto on sdn·l) accordlng'to eqn (9) a• at 
p!!l!~tUH. Ffow across the estifll'l.lo1t4td phreatic surface near an under
grnur.d opening will then be zerol~ed largely by adju~tment• of infiow 
at node• on the bound.ory of the openIng, rather t""" at nodes at ground 
leVIl!l. 

COIICLUS I ON$ 

It has been deroonstrated thst tl'le bound,.rv equat loo method c•n be u .. d 
to solve problems of !JnconfiM.d ftow in pOrous media~ but as indicated 
in the preceding section~ the iter~tion for the phreatic surface most 
be llll>dl fied to en•ur" that It converge• reliably. Ther~ ~re !>«> 

ff\Otlvu for developing an algorithm in which the l>oOJndary el,_nt ""''h is 
not r&d@!lned It each iteration: to reduce computing cost~ and to ensure 
th•t th<l! Cv'"!'utetion could be all.,_d to proceed to,. conclu•ion with
out the need to check periodlcelly whether the probi~m of approaching 
or intersecting l>o•Jndaries is likely to be encountered and t"k" aW>idance 
action "her~ neceuary. In practice, a •yHeOI of slmultaMo•a equations 
must be •clved at each Iteration, and the computing co•t may in fact bE 
comparable with thet of an algorithm In which the boundary element mesh 
I• redefined. However, the •lgorithm described here is free of the 
problems posed by intersecting bound.,rles, and once the iteration is 
modlfl®d will operate reliably without user Intervention. 
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The ejlllllcabll i ty of the bound.ory ele~t~ent met~od to prob '"""' of ground
""'ter flow through rO<:k deP"nd• upon the "alidity of tile representation 
of the jolntt>d rock""''" by"'' <'qulvalent c:>ntinu..... In future develop-
ments, the existing namerlcal model •hould be interfaced with finite 
elements which w!ll represent major dlsco~tinultie•, the•~ bring dis
c:ontlnultleo of relotlvely high permeability, the dl•nsior» of which 
are of the'"""' order as thou of the MU of roc:k under consldu.,tlon. 

Tha work deseri~ed herein w•~ jointly sponsore6 by tha Stl•nce and 
Engl,..rlng Research Council a>ml by th• C""""isslon of the European 
Communities as p•rt of Its ~ ~nd D Progr~ on Primary R.ow Materl~ls. 
PerMiulon to p•Jbl!$h till~ p!ill"'' Is gratefully acknowledged. 
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