ANALYSIS OF PLANE GROUNDWATEA FLOU GY THE BOUNDARY INTEGRAL EQUATIOH METHOO
\section*{J.9. Watson and E.T. Brown}
Department of Mineral Resources Enginearing !mperlal College of Science t Technology, Londor SW7 2EP, U.K.

Abstract

AESTAET

Numerical models are requifed to make calculations of the distributions of potential and the flows into excavations for most mining related groundwater flow problems. The formulation of such problams usirg the boundary integral equetion methou and the implentation of this formulalion in computer program. Gflow, eve described. This program is designed to solve problems involving plane, unconfined fiew in homogeneous rock mosses having anisocropic permestilites determined, for example, by flow through major joint setc. An itertive procedure is developed for determining the location of the poreatic surface in the steady siate condition. Although boundary elements with quadratic functional variation and adynced numerical procedurat are used, GFlot has been designed se thet it can be used with consucer systems small as a 64K byte microprocasisor, glven hard disc on wich to hold scratch files. The solution \bar{z} a given for wn illustrative problem involving flow through on anisotropic rock sata inso singie horseshoe shaped tunnet.

INTRODUCTION

In feasibillty and plaming wtudies for mining operations in waterbearing ground, it is importanc to be able to make predictions of the likely rites of groundwater inflow into the mining excavations and of the positions of the phreatic surface at various stages of mining. Such predictions permit estlmases to be hade of the costs of draining the mine, the capacities of the pumping equipment required, the likely extent of operationil difficulties caused by water inflows, and the effects of drawtown on surface installations and groundwater supplies.

In order to be ple to make these predictions, knowledge is required of the regional geohydrology, including initis piszonetric levels and recharge sources, the geologlcal struciure and hydraulte characteristics of the rock mess surrounding the mine, and the geometry of the proposed excavations. Most importantly, thod of analysis is reguired. Many occurrences of weter in mines extremely difficult to predict and analyse. These lnclude inrushes from caverns in carbonate rocks or from isoleted pockeiz of wierestorting rock and flows through conduits or from sources that ere teast partially man-made [1].

In general, however, flows will be through the primary permeability of the rock itself, through the secondary pernkability due to the joints in the rock mass, or through major geological conduits such as faults and dykes. Inflows through, or controlled by, major geological conduits have caused serious mining problems in the past $[1,2]$. Provided their existence, hydraulic characteristics and recharge sources can be predetermined. flow through such features can be analysed using the finite element method [3], for example.

Excluding special features such as those referred to above, the seepage of water in a rock mass will be typically through the joints or discontinuities rather than through the blocks of intact rock [4]. Only in very porous rocks, such as some sandstones and limestones, will the primary permeability of the rock be dominant. On the scale of a mine, the joints wili be very numerous, and so it will be impracticable to determine their distributions and individual characteristics and to consider the flow through each of them in the analysis. If the joint spacing is small compared with the dimensions of the problem domain, it is acceptable to treat the rock mass as an equivalent continuum with permeabilities such that, in the large, the hydraulic characteristics of the continuum and the jointed rock mass are equivalent [4,5]. Generally the permeability of the equivalent continuum will be anisotropic and it may be necessary to treat the rock mass as being composed of a number of regions each with different characteristics. In the analysis presented herein, the rock mass may be anisotropic but is considered homogeneous.

To calculate the variation of potential through the continum and the flow across any part of its boundary, it is necessary to solve a boundary value problem. For some simple problems, generally involving cylindrical excavations, closed-form solutions have been obtained for confined and unconfined flows [5]. These solutions have been adapted to give simple, and approximate, predictions of inflows into underground excavations $[6,7]$. In general, closed-form solutions can only be obtained for cases involving linear flow laws and excavation geometries and boundary conditions which can be described by simple functions. In other cases, numerical methods must be used.

NUMERICAL METHODS

Boundary value problems of groundwater flow are usually solved by finite difference or finite element methods $[8,9]$, in which it is necessary to define a grid or mesh throughout the region of interest, and to construct and solve a system of simultaneous equations in terms of unknown associated with node points distributed both inside the rock mass and on its surface. If there is a phreatic surface, this system must be solved many times during an iterative calculation of the location of that surface. Since the order of the system is large, computing costs are high. In addition, the governing partial differential equation is not exactly satisfied at each point of the continuum, and so the solution obtained corresponds to a residual distribution of sources and sinks throughout the rock mass.

Boundary integral methods are alternatives to finite differences and finite elements, in which the partial differential equation is transformed to a boundary integral equation [10]. To solve the integral equation, a
mesh of elements is defined on the surface only of the region of lnterest, and a system of equetions in terms of unknowns ssocisted with nodes on the surface only is constructed and solved. The system of simultaneous equations is smiler, and the solution obtined satisfies exactly the governing partial differentigl equation at every point of the continumm.

The integral equation
Let us consider the shree dimenstonal problem. Let $a(y)$ and $B(y)$ be arbitrary twice continuousiy differentiable potential fields, and let $v_{i}(a)$ and $v_{i}(b)$ be the corresponding fluid velocitles. Then by making sultable substitutions in the divergence theoremliof it can be shown that

$$
\int_{V}\left\{\alpha(y) \frac{\partial v_{s}(\beta)}{\partial y_{s}}-\beta(y) \frac{\partial v_{s}(\alpha)}{\partial y_{s}}\right] d v_{y}=\int_{s}\left[\alpha(y) y_{s}(\beta)-\beta(y) v_{s}(\alpha)\right) .
$$

where S is the surface of the region V, and $n_{s}(y)$ is the unit outward normal to S at the point y. Equation (I) is analogous to setti's reciprocal theorem of elasticity[lo], and, for an isotropic continumm of unit permeability, reduces to Green's symnetrle identicy. Let us take $a(y)$ to be the solution $p(y)$ of the boundary value problem, and let. $B(y)$ be the potentlal $U(x, y)$ which would arise in sn infinite region if there were unit source of fluid at the point x on 5 . In order to satisfy the conditions of differentiability, let us exclude the singularity of $U(x, y)$ st x by writing equation (1) for the region $V-v(x, E)$ where $\forall(x, E)$ is that part of V which lies within sphere of radius E centred at x (see fig.l). Tiren because $u(y)$ and $U(x, y)$ satisfy the governing partial differential equation everywhere in $V-v(x, c)$ the volume integral vanishes and

$$
\begin{equation*}
\iint_{s-S(x, E)}\left(u(y) v_{s}(u)-v(x, y) v_{s}(u)\right\} \quad n_{s}(y) d s y=0 \tag{2}
\end{equation*}
$$

where (see Fig.I) $S(x, E)$ is that part of S which lles within the sphere of radius ε and $s(x, \varepsilon)$ is that part of the surface of the sphere wich lies within V. Now let $\varepsilon \rightarrow 0$. It can be shown that, in the limit [10],

$$
\begin{equation*}
c(x) u(x)+\int_{S} T(x, y) u(y) d S_{y}=\int_{S} U(x, y) t(y) d S_{y} \tag{3}
\end{equation*}
$$

where $t(y)$ and $T(x, y)$ are the inflows across S at y due to the potential fields $u(y)$ and $U(x, y)$, and $c(x)$ is known function of x. if the tangent plane is continuous at $x, c(x)=\frac{1}{2}$. Equation (3) is the boundary integral equation of the direct formulation. if either $u(y)$ or $t(y)$ is known at every point y of S, then this equation can be solved for which ever of $u(y)$ and $t(y)$ is unknown. If results are required at poincs x in V, they can then be computed using the results
and

$$
\begin{equation*}
v_{1}(x)=\int_{S}^{S} 0_{i}(x, y) t(y) d s_{y}-\int_{S} s_{i}(x, y) u(y) d s_{y} \tag{4}
\end{equation*}
$$

which. like the boundery inegegrel equation, are derized from equation (:),
For the plane problem, the malysis is the same as for three dimensions. except in that the region $v(x, \varepsilon)$ is taken to be para of a disc of radius E rather than of sphere. For the plane problem ln which the principat directions are pollel with the coordinate axes.

$$
\begin{align*}
& U(x, y)=\frac{\frac{1}{2 \pi-k_{2} k_{2}} \quad \log \frac{1}{0}}{y(x, y)=\frac{\left(x_{0}-y s\right) n_{2}(y)}{2 \pi p^{2} \sqrt{k_{1} k_{2}}}}
\end{align*}
$$

 x and $y, n_{s}(y)$ is the unit outward normal to 5 at y, and

$$
\begin{equation*}
\eta=\sqrt{\left(x_{s}=\sum_{g}\right)^{2}} \tag{7}
\end{equation*}
$$

In equation (s)

$$
\begin{align*}
& \theta_{i}(x, y)=-\frac{k_{1}}{\{ } \frac{\partial}{\partial x_{i}}\{U(x, y)\} \tag{8}\\
& S_{i}(x, y)=-x_{i} \frac{\partial}{\partial x_{i}}\{y(x, y)\}
\end{align*}
$$

Equations (3), (4) and (5) are yill if 5 is tenen to be the boundary of that part of the rock mass which is saturated, this being the rock beltom the phrestic surface. The locition of the phreatce surfmee is not keom? in adyence, and so the solution of groblem of groundwater flom is an icerative process. One method $[10,11]$ is to solve cquation (3) on the assumption thet the rost ls sefurated everywere, compute first stimate of the phrailic surface (e.g. the surfitet on which potential Aqum: altitude), solvequation (3) for the rock mass below thet surface, conpute second estlmate and so on untll changes in the computad locktion of the phrestic surface are sufficientiy smill. The repested equation solution is expens ive; worse, the elgoritim is mat robust becuss if the computed phrestic surface intersects some other part of the boumdarys, when the crom of a tunnel, then the intagral mustion is no longer soluble. An alternotive itermive metret: In which the boundary $\$$ doeg not move from its inttisl position is sherye fore proposed here.

Let us take 5 to be the boundary of the ontiry mast of rock under consideration, Ireluding rock that mey be dry, and for the purpose of wrising equation (3) suppose that over the part 5^{\prime} of 5 wich moy to wis or dry, inflow $e(y)$ is krown and potential $u(y)$ unknom. Let $u(n)(y)$ and $t(n)(y)$ be the neh iterated values of potential and inilow at y.
 equetion (3). Let us denate by $5 d n$ that part of s^{3} on which $(n)(y)$ Is less than wittudes and by $S_{w}(n)$ the rest of s^{l}. falow $\mathrm{S}_{\mathrm{d}}(\mathrm{n})$, the nth ifepated phreatic surfiace is taken to be tho urface on wich computsd potential oqual fitude. Durlige the itermion, the folligula.

$$
s^{(n)}(y)=\left(n-1 \frac{1}{y}\right)-k(n-1)(y)
$$

where $s^{(n-1)}(y)$ is the computed inflow across the (nul) th itezated phreatic surface at the point below y, and k is relaxation factor. for y on $s_{w}(n-1)$.

$$
\begin{equation*}
t^{(n)}(y)=\min \left\{\left[t^{(n-1)}(y)-k \Delta t(y)\right], 0\right\} \tag{10}
\end{equation*}
$$

where $A(y)$ are the adjustments to inflow on $j^{(n-1)}$ that would be required to set potential equal $\}_{n}$ altitude on $S_{w}(n-1)^{w}$. The iteretion is terminated when inflow ${ }^{(n)}(y)$ across the, phreatic surface, and differences between potential and altitude on $S_{w}(n)$, are sufficientiy small.

Numerical analysis
Let us represent the boundary S by p elements S_{b}, each wish three nodes (see Fig.2). Let $x(t, c) u(b, c)$ and $t(b, c)$ be cartesian coordinates of, and potential and inflow at, node c of element S_{p}. Then the coordinates of, and potenclal and inflow at, an arbitrary point of element s_{b} are given in terms of the shape functions $w(\xi)$ of the intrinsic coordinate E by

$$
\begin{align*}
& x_{i}(b, c)=\sum_{c=1}^{3} N^{c}(\xi) x_{1}(b, c) \\
& u(b, c)=\sum_{c^{m=1}}^{3} N^{c}(\xi) u(b, c) \tag{11}\\
& t(b, c)=\sum_{c^{3}=1}^{3} N^{c}(\xi) t(b, c)
\end{align*}
$$

where [10]

$$
\begin{align*}
& N^{1}(\xi)=\frac{1}{2}(\xi+1) \\
& N^{2}(\xi)=1-\xi^{2} \tag{12}\\
& N^{3}(\xi)=\xi(\xi-1)
\end{align*}
$$

and ξ varies from -1 to +1 . Let there be total of q nodes x^{a} on S, the number of node c of element S_{b} being $d(b, c)$. Then a system of simultaneous equations in terms of potential and inflow at these nodes, approximating to the boundary integral equation, may be wricten by taking the point x of equation (3) to be located at each of the g nodes in turn and substituting the parameteric representations of equation (II):

$$
\begin{align*}
c\left(x^{a}\right) u\left(x^{a}\right) & +{\underset{\sum}{b=1}}_{p}^{\sum_{c=1}^{3}} u\left(x^{d(b, c)}\right) \int_{S_{b}} T\left(x^{a}, y(\xi,) N^{c}(\xi) J(\xi) d \xi\right. \\
& =\sum_{b=1}^{p} \sum_{c=1}^{3} t(b, c) \quad \int_{S_{b}} U\left(x^{a}, y(\xi)\right) N^{c}(\xi) J(\xi) d \xi \tag{13}
\end{align*}
$$

where $J(\xi)$ is the jacobian ds/d where s arc length, and the superscript a ranges from 1 to q. The integrals of kernel-shape function products appearing in equation (13) may be evaluated using Gassian quadrature formulae $[10]$, and known values of potential and inflow substituted to yield a system of q simultaneous equations in terms of 9 unknown nodal values, one per node. Where potential is given on
both elements adjacent to eorner of the region under consideration, certain approximations must be made to reduce the number of unknowns assoclated with the node at the corner to one, but the resulting loss of accuracy is negligible except near the corner.

At the nth iteration, let us rearrange the numbering of the nodes so that nodes inside s^{2} and on $S_{w}^{(n-1)}$ are numbered from 1 to r, nodes inside S^{l} and on $S_{d}(n-1)$ are numbered $r+1$ to s, and nodes inside $S-s^{l}$ or on the boundary between S^{1} and $S-S^{1}$ are numbered from $s+1$ to q. Then equation (13) may be re-written

$$
\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \tag{14}\\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]\left[\begin{array}{l}
u_{w}^{(n)} \\
u_{d}^{(n)} \\
f(n)
\end{array}\right]=\left[\begin{array}{lll}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33}
\end{array}\right]\left[\begin{array}{l}
(n) \\
t_{w} \\
t_{d}(n) \\
g
\end{array}\right]
$$

where A and 8 are matrices of known coefficients ($A_{i j}$ and $B_{i j}$ being sub-matrices $\left\{\right.$, $u(n)$ and $t f_{n}$ are potential and inflow at nodes 1 to r, $u_{d}(n)$ and $t_{d}(n)$ are potential and inflow at nodes $r+1$ to s, and $f(n)$ and g A^{-I} unknown and known parameters at nodes $s+1$ to q. Premultiplying by

$$
\left[\begin{array}{l}
u_{w}^{(n)} \tag{15}\\
u_{d}^{(n)} \\
f^{(n)}
\end{array}\right]=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right]\left[\begin{array}{l}
t_{w}^{(n)} \\
t_{f}^{(n)} \\
g
\end{array}\right]
$$

where $C=A^{-1} B$. At nodes 1 to $r, t(n)$ is given by equation (10), in which $\Delta t(y)$ is the adjustment ${ }^{t}$, inflow on $s(n-1)$ required to set potential equal to altitude on $S_{w}\left(n^{-1)}\right.$. Let Δt_{w} be the vector of adjustments at nodes 1 to r. Then

$$
\left[\begin{array}{lll}
C_{11} & C_{12} & C_{13} \tag{16}\\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right]\left[\begin{array}{c}
\Delta t_{w} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
\Delta u_{w} \\
\Delta u_{d} \\
\Delta f
\end{array}\right]
$$

where $\Delta u_{w}=-\left(u_{w}^{(n-1)}-a l t i t u d e\right)$ at nodes 1 to r. Then

$$
\begin{equation*}
\Delta t_{w}=C_{11}^{-1} \Delta u_{w} \tag{17}
\end{equation*}
$$

At nodes $r+1$ to s, the point at which $u^{(n-1)}(x)$ equals altitude below each node is located by a Newton-Raphson iteration in which equations (4) and (5) are used to compute potential and flow. Equation (4) is then used to determine the slope of the phreatic surface, and then to calculate the inflow $s(n-1)$ across $i t$, so that $t(n)(y)$ can be calculated according to equation (g).

The procedure, then, is in principle as follows:
I) set $t_{w}^{(1)}=t_{d}^{(1)}=0$ and compute $u_{w}(1), u_{d}(1)$ and $f^{(1)}$ according
2) for $n, 2,3,4 \ldots a)$ compute Δt from equation (17), then (n from
b) locste the $(n-1)$ th phreatlc surface, by Newton* Raphzon iterazion, then compate t (from equarion (9).
c) eompute ut (n) (n) and f(n) accorsing to equat ion
3) terminatq the iseration wiow s (romi) and $A u_{\text {w }}$ are acceptably smail.

The algorithm described in the preceding section is lngimmented in program gflow, this being eprogron designed primerify ss a leaching and research facility, rather than as mans mof salving practical problems as efficientiy as possible. It is for that pewon that boundary elemenss with suadiracic functionsl wariation are chogen ingisad of Hermitian cuble ciements (12]. The logic of gifot is further simplified by tifling the swme order of cusstan quadisture formula for all elements ard positions of the firse argument of the kernel. rether than varying the order according to the etulated rapidity of variation of the integrand [10]. Waste features of eariler progrems for elastostetic gnatysis are herever retained: sbout hali she code is preprocessing, giving the user conylete frecdom of node and element numbering lithe partitloning described in the preceding section is notional), considerble freedom of order of presentation of input data. automaic dats gentarion facilitite and readily comprehensible error messages; there is no known wey of causing abnormal tertination of execution other than by providing insufficient system resources; and the overiay stracture and excenslve use of scratch flles allows the program to be twn on small systems. GFlow solves problems in which the boundary is represented by up to 100 elements (ordey of onstixi C of equation (15) wp to 200) in 16 K mord of CGC centrat memory (l word m 60 bi s), and could be converted to solve problems of neariy that size on a 64 k byte aicroprocessor, given hard disc on which to hold scratch files. A simplified flow chare is shom in fig.3, and conterts of scratch files are sumarised in Table i.

From Fig. 3 it may be seen thet integrals of kernel-shape function producss appearing in equation (13) are evaluated anly once. No matrix inversions are corried sut, ti being more economical to factorise into lower and upper triangular matrices. The metrix A of equation (14) is constructed ond facrorised only once. The matrix ε_{11} of equation (16) is generally much smaller chan the matrix A, so the cost of constructing and factorising it once during each iteration is usually insignificant. The most expensive operation is the NewtonRaphson iteration for the phrealic surface performed once per iteretion. To reduce the cost of this iteration, the location of the $(n-1)$ th phreatic surface is taken as the initial estimate when locating the nth surface. For interior points x near 5 , substitution of the appropriate parametric representations and use of Gausion quadrature formulae in equations (4) and (5) does not give aecurate resulis: therefore, when $u(x)$ and $v_{1}(x)$ are required for polnt x near s, their values at point further from S are calculated and the desired results obtained by linear interpolation between that point and the nearest point to x on s. This procedure incurs the inconvenience end overhead

鱼

of locating the netrest surface point so x, but the putires developed for whis purpose are reiliable and of ffficiency such phet the overhead
 than obsus 3.7 times the lengeh of the nedrest boundsry element. if
 repidity of varintion of che ingegrand $[10]$. then thit distance, and

Conslder an axplorstion cunnel wifh horse-shot shaped crossusection,

 is 80n bitow ground igust. There is recherge at ground level ut dise
 300 m cross"tection of roch is modellisd, the outer boundery beirg re

 $3.76 \times 10^{-5} \sin / \mathrm{sac}$ in the mertical and forizontal directions respecityely.

 concuted io dram down 80 gher crow of the tunnel.
in this semple, corsorgence of the itertion was slow bochuete at points

 (getequ (s)) scross the esilmated phrestic surfect. It is iriterded zo
 sompated by solying system of imultseons equations of order s (sef
 on $S_{y}(n-i)$ and compucing adjustments on $5 d$ moi) occordingito sqn (9) a at prestif. Fiom acposs the estimated phreatit surface nempan underground opening wili then be zerolsed lergely by edjustments of inflow © 2 nodes on the boupdisy of the opening: rather then at nodes wt ground 108in.

Conchus 10 ms

Abstract

It hes been demonstrited that the boundary evuation mothod con be used $t 0$ solve problems of unconflyen ficw in porous medit, but ss indicated in the preceding sestion, the iterscion for the phrestic surface mast be nodified to ensure thot it converges reliably. There were two motives for developing an algorithen in wich the boundsiy elemgnt mesh is not radefired at eath iteration: so reduce computing cost. and co ensure thet the emputarion could be wllomed to proceed to conclusion wint out the need to check periodicitly whether the problem of appromening or intersecting bounderies is likely io be encountered and toke avoisance action wher necessary. In practice, system of simultaneons equanions must be solwed at each iteration, and the computing cost mey in foct be comparotle with that of an elgorifhm lin which the boundary element mesh * redefirsod. thowever, the algorithm described here is free of the problems posed by intargecting boundzries, and once the iteration is modifles will operate reliably withous user intervemeion.

The spplicatility of the boundery element method to problems of groundwater flow through rock degends upon the vilidity of the representition of the jolnted pock mass by wivequilent continuom. In future developments, the exlsting mumelcal madel shoule be incerfaced with finite elements which will represtens mojor discontinuties, these belng discontinuities of relailvely bigh permabliliy. the dimensiong of which are of the stre order at thoss of the iss of rock under somstiertion.

AKKHONLEDGENENTS

 Enginetring Resaerch Comcil znd by the Cosmission of the Europeen
 Permistion to putllsh ehls poper is gratefully acknowledged.

References

 Wesp York, 《ol.3, 98.26-1-26.55. (is73).
 ontein mine. J. seh. Afr. Inst. Min. Metell., Vol.69. pp. © 21 463. (1969).
3. Desai, C.S. Flow through porcus wali. Mumericel kethods in geotechnical Engimering, C.S. Desai and J.T. Christian, eds. F FicGrawe Hill,New York, pp.458-505. (1971).
4. Lowis, C. mock hydraulics. In Rack mechanics (course held at the Internetionel Centre for Hechaniciel Sciences. Woithe. italy), L. Muller, ed., Springs-Verlag, Vienns, pp.299-387. (1974).
5. Sear, J. Dynamics of Flulds in Perous Medie. Americen Elsevier Co., Naw York. (1572).
6. Dudley, W.V. Technique for preficting ground-weter inflow to large underground openings. Trans. Soc. Min. Engrs, AlME, Voi.252, PD.149-153. (1972).
7. Brown, A. Simple mine flow evaluetion for underground oll shale mines. Alne Drainage - Proc. Ist int. Nine Drainege Symo., G.0. Argell c.0. Bramer, eds., Miller treemen Publications. San

8. Fllen, O.M. C. Relemation methods in Efagimering and Science. McGraw-Hill, London. T354).
9. 2ienkiewlcz, 0.6. The Finite Elemant Method, MeGraw-4iH, London. (1377).
10. Esenerjee, P.K. and utterficid, (eds). Dexelogments in loundary Element methods - i. Applied Scleace publishers. London. (1ुy]).
11. Liggett, J.A. and Solmon, J.R. Cubic Soline Boundary Elements. Int. J. Hum. Meth. Eng., 17. pp.543-556, 1981.
12. Watson. 1.0 . Hermitian Cuble Boundary Elaments for plane problems of Fracturs Menenics. Res Mechanica. 4, (1982).

IMWA Proceedings 1982 A | © International Mine Water Association 2012 | www.IMWA.info

File	Conterats	File	Contents
LIN	integrals of kernel-shape function products	LWM	upper triangular factor of C_{11}
LuM	upper triangular factor of matrix A	LWL	lower triangular factor of C_{11}
LUL	lower eriangular factor of matrix A		
LIM	$\operatorname{matrix}\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right]$		

Table $1:$ Scratch files created by GFLOW

```
List of Figures
Figure 1: Region for which the reciprocal theorem is written.
Figure 2: Boundary element }\mp@subsup{S}{b}{}\mathrm{ and shape functions.
Figure 3: Simplified flow chart of program GFLOW.
Figure 4: Boundary element mesh and computed phreatic surface.
Figure 5: a) Computed phreatic surface in the region of the
    tunnel, and
    b) computed inflow across the tunnel boundary
```

$$
\begin{aligned}
& \text { Figure i: Region ter wich the resprocal theoren : } \mathrm{f} \text { whiten }
\end{aligned}
$$

Node 3
at $x_{i}(b, 3)$

$$
\xi=-1 \quad \xi=0 \quad \xi=+1
$$

Vode 2 at $x_{i}(b, 2)$

