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Abstract  
It is predicted that vast volumes of impacted mine water will be produced by mining activities in the 
Mpumalanga coalfields of South Africa. Irrigation provides for a novel approach to the utilisation and disposal 
of mine water, under the correct conditions. The significance of these findings lies in the versatility of this 
irrigation. Communities which often have very few other resources can utilise mine water to generate 
livelihoods. When one considers social aspects like job creation, especially after mine closure, it is clear that 
irrigation with certain mine waters, on carefully selected and managed sites, could form a sustainable, 
economically feasible and socially uplifting strategy in the developing world. Research over a period of more 
than 10 years has shown that this water can be used successfully for the irrigation of a range of crops 
(Annandale et al., 2004). The potential environmental impact of this excess water is of great concern in a 
water-scarce country like South Africa. There is however continuing concern from the local regulators 
regarding the long-term impact that large scale mine water irrigation may have on groundwater quality and 
quantity. Detailed research has been undertaken over the last years on both undisturbed soils and in coal 
mining spoils. These sites range from sandy soils to very clayey soils. The results indicate that many of the 
soils have considerable attenuation capacities and that in the period of irrigation, a large proportion of the salts 
have been contained in the upper portions of the unsaturated zones below each irrigation pivot. The volumes 
and quality of water leaching through to the aquifers have been quantified at each site. From this mixing ratios 
have been calculated in order to determine the effect of the irrigation water on the underlying aquifers. 
One of the outcomes from this study was to define the conditions under which mine water irrigation can be 
implemented and the associated operational and monitoring guidelines that should be followed. These have 
been based on the findings from this study, the fundamental considerations of mine water irrigation, the 
regulatory environment and, as far as possible, the practical implementation of mine water irrigation as part of 
optimal mine water management. Aspects considered include soil type, terrain morphological unit, water 
quality, water resources and several other key parameters.  
 
Introduction  
South Africa is a water-poor country. With increased industrialisation and population growth, the 
demands on this resource are increasing. South Africa is the fourth largest producer of coal in the 
world, and the 224 million metric tons of coal produced per year directly supports employment for 
approximately 50000 employees. Unfortunately, several water-related problems, largely associated 
with water quality deterioration due to pyrite oxidation, occur, as a result of mining.  
Huge volumes of mine water, impacted on by the phenomenon of acid mine drainage, are presently 
being produced as a result of mining activities in the Mpumalanga coalfields (Figure 1). When 
released into water environments, the high salinities of this water are responsible for unacceptable 
water quality degradation.  
Coal extraction has been ongoing at the Mpumalanga Coalfields for more than 100 years. Coal is 
generally mined by opencast- or underground methods in South Africa. Underground mining 
comprises in excess of 100000 ha, while opencast mining is expected to eventually exceed 40 000 ha 
(Grobbelaar et al., 2002). In opencast areas, much of the groundwater influx is dependent on the 
state of post-mining rehabilitation, while in underground mining, factors such as the mining type, 
depth and degree of collapse and interconnectivity is important.   
After the closure of mines, water in the mined-out areas will flow along the coal seam floor and 
accumulate in the lower-lying areas. These voids will fill up with water, and hydraulic gradients will 
be exerted onto peripheral areas (barriers) or compartments within mines. This results in water flow 
between mines, or onto the surface eventually. This flow is referred to as intermine flow 
(Grobbelaar, 2001). Projections for future volumes of water to decant from the mines have been 
made by Grobbelaar et al. (2000). In total, about 360 ML/d will decant from all the mines in 
combination. 
 



Figure1 Map of South Africa. 
 

 
In a water-stressed country like South Africa, all water must be regarded as a potential resource, and 
there is potentially a tremendous resource that can be utilised by activities such as irrigation, 
provided the environmental impact is not excessive. This water can be utilised by previously 
disadvantaged communities for job creation and to their economic benefit.  Irrigation provides for a 
novel approach to the utilisation and disposal of mine water, under the correct conditions.  
This research investigated the impact of these activities on groundwater resources at irrigation pivots 
at collieries across the coalfields of South Africa (Figure 2), where mine water irrigation has been 
done for periods ranging from a few years to more than seven years.  
 

Figure 2 Position of the collieries of Mpumalanga where most of the research has been done. 
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Water quality impacts 
Associated with coal mining in South Africa, the phenomenon of acid mine drainage (AMD) occurs. 
Acid mine drainage occurs when sulphide minerals in rock are oxidised, usually as a result of 
exposure to moisture and oxygen. This results in the generation of sulphates, metals and acidity. 
Pyrite (FeS2) is the most important sulphide found in South African coalmines. When exposed to 
water and oxygen, it can react to form sulphuric acid (H2SO4). The following oxidation and 
reduction reactions give the pyrite oxidation that leads to acid mine drainage. 

 
(1) FeS2 + 7/2 O2 + H2O => Fe 2+ + 2SO4

2- + 2H+  
(2) Fe2+ + 1/4O2 + H+ => Fe3+ + 1/2 H2O  
(3) Fe3+ + 3H2O => Fe(OH)3 + 3H+  
(4) FeS2 +14Fe3+ + 8H2O => 15Fe2+ + 2SO4

2- + 16H+ (Stumm and Morgan, 1996). 
 
In the South African coalfields there are co-existing carbonates such as calcite and dolomite, which 
can neutralise the acidity generated (Usher, 2003) Alternatively the acidity can be neutralised by 
lime addition, as occurs with acidic water pumped from the Kleinkopje Colliery workings. 
From the overall reaction of calcite as buffering mineral, it is evident that calcium and sulphate will 
increase in concentration:  
 

 (5) FeS2 + 2CaCO3 + 3, 75O2 + 1, 5H2O � Fe(OH) 3 + 2SO4
2- + 2Ca2+ + 2CO2 

 
Figure 3 Gypsum saturation (SI) in neutralised mine water used to irrigate at one of the sites. 

 

 
This increase in Ca2+ and SO4

2- can only occur up to a point, where the aqueous solubility of these 
ions becomes limited by the solubility of gypsum (CaSO4.2H2O). Using the PHREEQC geochemical 
model (Parkhurst and Appello, 1999), the saturation state of the neutralised mine water used to 
irrigate was determined (Figure 3). The results show that the gypsum approached saturation (SI=0) 
for most of the values. The implication of this is that when irrigation takes place, some evaporation, 
together with the selective uptake of essential nutrients, will result in gypsum precipitation. 
Gypsum is a partially soluble salt. Concentrating the gypsiferous soil solution through crop 
evapotranspiration precipitates gypsum in the soil profile and therefore removes it from the water 
system (see Table 1 for irrigation water quality), reducing potential pollution (Annandale et al, 
2002).  
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Table 1 Average water quality of the irrigation water at one of the sites. 

 
pH EC Ca Mg Na K Alkalinity Cl SO4 Fe Mn Al 
 mS/m mg/L mg/L mg/L mg/L as mg/L 

CaCO3 

mg/L mg/L mg/L mg/L mg/L 

6.21 344 578 242 52 12.9 34 12 2550 3.1 10.3 0.01 
 
Sustainability of irrigation with gypsiferous mine water 
Annandale et al. (2002) did the initial work regarding irrigation with gypsiferous water in South 
Africa. The commercial production of several crops irrigated with gypsiferous mine water was tested 
in a field trials since 1997. From these trials, it was observed that no foliar injury was observed due 
to sprinkle irrigation with gypsiferous mine water, and that possible nutritional problems, such as 
deficiencies in K, Mg and NO3, occurring due to Ca and SO4 dominating the system, can be solved 
through fertilization. Crops like sugarbeans, wheat and maize were found to be commercially viable.  
The finding from the research was that gypsiferous mine water for irrigation is sustainable for crop 
production in the short term (three years) with negligible impact on the soil salinity. 
Groundwater monitoring has been undertaken at these sites by Grobbelaar and Hodgson (1997-2001) 
and by Usher et al. (2001-2006). Observation of limited water quality impacts in the groundwater 
over time has prompted the research in the vadose zone below the root zone of each irrigated area.  
In order to determine the hydraulic behaviour, salt balances and attenuation, and the movement of 
the salts at the various irrigation sites, tensiometer experiments have been performed on site. 
Moisture potentials were calculated from the tensiometer data. 
The results pointed to several potentially significant findings for the wider application of mine water 
irrigation. Where the soils are richer in clay content, there is a significant attenuation of salts in the 
shallower zones. While the attenuation capacity of clays is a well-established concept, the long-term 
viability of irrigating with water influenced by coal mining is not widely accepted by regulators in 
South Africa. The  groundwater monitoring results indicate that this attenuation makes mine water 
irrigation a viable option in the short to medium term where gypsum-saturated waters are used, as 
analysis of the water in the aquifers below show limited increase in degradation in quality, except in 
sandy soils.  
Analysis of the tensiometer data over time, continued groundwater and soil water monitoring and 
detailed analysis of the soil characteristics as far as hydraulic and mass transport properties at each 
site, allowed the development of accurate conceptual models of the interaction between irrigation 
and the underlying soils and aquifers. A general model for irrigation sites indicates the following: 
1. Tensiometer data indicates that the soil throughout the profile is high in moisture content, with the 
exception of the top 0.5 – 1m. On average the moisture content is above 30%. This data also 
indicates that deeper layers dry out during winter. 
2. The clay-rich layers play an important role in the migration, with a build-up of moisture above 
these layers. The clay is important in limiting the vertical flux.  
3. Data from soil analysis with depth through the profile indicates that most of the salt is contained 
in the top 2 m of the profile. Chemical modelling of the soil water indicates saturation of the water 
with respect to gypsum above one meter, implicating gypsum precipitation. Deeper down the soil 
water is unsaturated with regard to gypsum. Approximately 80% of the salts applied over the years 
of irrigation are retained. Data from soil water analysis obtained of the porous cup sampling 
indicates that a lot of these salts occur in the soil water (about 30-0% of the total salts applied), and 
that the balance precipitates in the upper two meters of soil or gets adsorbed. This implies that over 
the short to medium term the irrigation with coal mine water does not influence the aquifers to a 
great degree. Dissolved salts leach to the aquifers at a very low rate and are diluted at such a fast rate 
because of lateral groundwater flux. As a result low concentrations are detected through borehole 
sampling. 
 
Identifying land suitable for irrigation 
One of the outcomes of this study was to define the conditions under which mine water irrigation 
can be implemented and the associated operational and monitoring guidelines that should be 



followed. Rules have been established for mine water irrigation based on the findings of this study, 
the fundamental considerations of mine water irrigation, the regulatory environment and, as far as 
possible, the practical implementation of mine water irrigation as part of optimal mine water 
management.  
The rationale used to provide guidance on site selection, monitoring and operations is summarised 
by:  
 

Figure 4 Rationale for defining site-specific criteria. 
 

 
 
Figure 4 indicates that there is basic data that needs to be provided before any kind of decision on 
the sustainability of mine water irrigation can be made. Several so-called critical flaws have also 
been identified by this research. The presence of these flaws will lead to an immediate 
recommendation that irrigation with mine water should not occur. If none of these flaws is present, 
the decision can be made as to whether mine water irrigation is to be done on undisturbed soils 
(green fields) or on rehabilitated mine spoils (brown fields). Criteria for each type of irrigation have 
been identified and included in this decision-making process. 
Figure 5 shows the type of information considered when defining the suitability of a particular site 
and the type of irrigation planned (duration, water quality, crop etc). 
To facilitate consistent application of the findings and principles established in this research, it was 
decided to follow an approach according to which information of different types is considered and 
from this provide a screening tool for site selection, operation and management. As such, this 
screening tool provides guidance on these aspects and considers a wide variety of information. The 
intention of this tool is not to give accurate information on irrigation scheduling and crop selection, 
but rather to use environmental data and simplifying assumptions to provide a screening mechanism 
for decision making.  
 
 
 
 



Figure 5 Data input required to determine impact and define criteria. 
 

 
 
 
The most important question before irrigation can be introduced is whether or not the land is 
suitable for irrigation.  
Soil is often the only medium for dumping saline water.  Using waste water for crop production 
under irrigation seems like a perfect solution as it can be financially beneficial as well.  However, 
the soil is not always the perfect sink and the environment must be protected.  Protection of the 
environment is often seen as a good reason to pollute the soil with degraded water, assuming that the 
soil is a perfect sink and/or the soil is not part of the environment.  The extent to which the soil 
serves as a good sink varies.  Soil can effectively remove environmental hazards without it or the 
surrounding environment becoming polluted, but usually either the soil or the groundwater is 
polluted. Irrigation of soil with gypsum-rich water is an example of where the soil may serve this 
goal well.  If the composition of the irrigation water is favourable for precipitation of gypsum in the 
soil, the gypsum may be removed from the water effectively.  After precipitation the impact of the 
salt on crops is drastically reduced.  In the dissolved condition the severity of divalent salinity is very 
low compared to sodium chloride solutions. 
 
Procedures for selecting land for irrigation would include: 

1. Site properties including land suitability for irrigation.  
o Soil types (well drained, moderately drained and poorly drained).   
o Terrain morphological unit in the landscape containing the highest percentage of 

land suitable for irrigation.   
o Take slope into account.  Different irrigation methods accommodate slope 

differently. Select crops resistant to salinisation. 
o Irrigation area size (ha)  



o Irrigation water quality   
o Aquifer classification  
o Geology and geological structures including karst and instability 
o Volume related aspects (Water level, Rainfall, Irrigation volumes) 

 
The suitability of soils for irrigation primarily depends on four factors.  
 Firstly the final infiltration rate of the soil must be high enough to prevent run off.  The final 
infiltration rate is mainly determined by the soil texture, soil surface structure and slope.   
Secondly, irrigation soil must have good internal drainage.  The water must move through the root 
zone freely to avoid water logging.  The factors controlling internal drainage are complicated but 
fortunately the soil morphology, as accommodated in the South African soil classification system, is 
a good indicator of internal drainage.   
Thirdly, irrigation soil must have good external drainage as excess water, needed for leaching, must 
be able to move out of the system and join either the groundwater or surface water in rivers and 
wetlands.  The factors controlling the external drainage are even more complicated than those 
controlling internal drainage.  Soil morphology, specific redox morphology, also serves as a good 
indicator of external drainage and therefore the soil types of the South African soil classification 
system are classified according to the degree of drainage.  Limited drainage is aggravated by the 
position in the landscape or terrain morphological unit (TMU).  
Fourthly, the water-holding capacity (WHC) of a soil must be great enough to hold water for one 
irrigation cycle, usually one week.  This limitation can be reduced by systems that can irrigate more 
often.  Mechanical irrigation like drip and micro irrigation must be avoided as they are probably 
unsuitable for use with saline water as the leaching factor cannot be upheld with them. 
The principles applied in developing these soil suitability ratings were modified to fit the 
requirements of the area and quality of the irrigation water.  Several factors contribute to the 
decision to make the drainage requirements stricter.  The rainfall of the area is high, increasing the 
risk of water-logging.  The criteria for soil depth are therefore more strict than usual.  Saline water 
combined with water-logging increases the risk of salinisation and puts more emphasis on soil depth. 
 

2. Closest Community (upgradient/downgradient, dependence on ground water)    
 
3. Monitoring system (number of boreholes, distance of these boreholes from the site, 

monitoring frequency, and current groundwater quality)  
 
A set of critical flaws for mine water irrigation has also been identified. These flaws are situation-
related to the location, water quality and receiving environment. If any of these criteria occur on site, 
mine water irrigation should be carefully reconsidered as an appropriate water use or mine water 
management option.  
 
The critical flaws have been defined as follows: 

1. No irrigation is allowed with potable water (defined as TDS < 900 mg/L or EC< 150 
mS/m) for basic human needs (BHN). 

2. Aquifer classification:  If the irrigation is planned on a shallow sole source aquifer, it is 
a critical flaw. 

3. Area of irrigation: If the area is greater than 150 ha, the criteria used in this document 
may not be appropriate for decision-making since no current research has been done on 
such a scale. The success of current irrigation is also due to the relatively small scale of 
application. 

4. Water quality: The irrigation water must be suitable for crop production. If the irrigation 
water pH < 5, or if (Ca+SO4+HCO3) in meq is < 60% of the total ionic composition 
(unless EC < 200 mS/m), or if the irrigated water is less than one and a half times that of 
the background EC, then irrigation cannot be allowed. Also if the SAR > 15, then this is a 
critical flaw and irrigation should not be allowed. 



5. Land type: If the assessment for soil suitability is N, this is considered to be a critical 
flaw. If there is a clay layer with a clay % more than 10% greater than the average from 
that soil type and this occurs less than 1 m below the root zone, this is a critical flaw. 

6. Water level: If the groundwater level < 1.5 m: critical flaw. 
7. Depth of soil: Less than 0.5 m soils: critical flaw. 
8. Community dependence on groundwater: If community dependence on groundwater > 

80%, it is a critical flaw unless the community is > 2 km away or up-gradient of the 
proposed irrigation or irrigation is planned for a very short period of time. 

9. Land stability: If pivot site is in an area of land instability, if there are sinkholes or if 
there is an underlying dolomitic aquifer, this would constitute a critical flaw.  

10. Environmental:  If there is a wetland, nature reserve, Ramsar site or a site similar down-
gradient within 2 km, this is critical flaw. 

 
Critical flaws should highlight potential situations where mine water irrigation is likely to cause 
long-term problems. However, with detailed determination of the on-site conditions, and potential 
monitoring and mitigation, irrigation in such areas may still be possible.At opencast sites, there are 
two main issues to consider. One important factor is the rehabilitated soils on top, and the other the 
spoils underneath. 
 
Rehabilitated soils 

� Depth of soil (value in mm) 
� Type of soil: The same criteria as for undisturbed soil in area (this can be carried over from 

undisturbed soil input), or site-specific soil properties (% clay, loam and sand) must be 
considered. 

 
Spoils 

� Is it free draining?  
� Potential for acidity (assume that it is Potentially Acid-Generating (PAG) unless other data 

exists). Based on available data, either Potentially Acid-Generating, Non-acid-generating or 
Uncertain spoils will be used. Site specific ABA data can be included.  

� Proportion of spoils unit to be irrigated (either percentage, or enter total spoils area draining 
to decant point and area of mine water irrigation)? 

� Water use (will decant water be re-used for irrigation)? 
� Is any decant released to the environment, currently or in the future? 
� What % of spoils is flooded at the decant elevation (% value)? 
� To what degree can gasses enter the spoils?  

 
Monitoring guidelines 
If the potential site fulfils all the criteria set out in the previous sections, appropriate monitoring 
must be put in place. Since the suggested monitoring must meet DWAF requirements, the most 
appropriate manner in which to deal with such irrigation is to apply the DWAF Minimum 
Requirements for Monitoring at Waste Disposal facilities. DWAF (2005) states that monitoring 
networks at waste management facilities must allow monitoring of the system on a representative 
basis, and that the key to successful monitoring is the linking of point information into larger 
systems, referred to as monitoring networks.  As such it is recommended that these DWAF guidance 
documents should provide the minimum monitoring requirements at mine water irrigation sites 
and that the monitoring “should extend beyond pollution plumes to allow for the delineation of 
plumes and investigations into the pollution migration rate.” 
Based on the observations from the research and the DWAF (Department of Water affairs and 
Forestry) Minimum Monitoring Requirements, it is suggested that for each pivot where mine water 
irrigation is undertaken, the following groundwater monitoring is recommended: 
 

1. Prior to installation, a detailed conceptual model of the site geohydrology should be 
constructed so that appropriate monitoring is put in place. 



2. As the system is installed, detailed measurements and observations of the geology and 
aquifer characteristics should be done (using techniques such as slug or pump testing 
etc.), and the conceptual model verified. This data will also allow a more accurate 
determination of the expected impact of the irrigation activities. 

3. At each pivot site at least one up-gradient and two down-gradient boreholes should be 
installed, with a borehole pair near the centre of the pivot itself. 

4. The boreholes on the outside of the irrigation must be constructed in a manner which is 
consistent with DWAF’s Minimum Requirements document. 

5. The borehole pair within the pivot should be installed as follows: 
 

a) One shallow borehole that is drilled down to the top of the hard rock underlying 
the irrigation area, to below the weathered zone. This borehole should have a very 
short length of solid casing followed by slotted casing or a borehole screen to the 
bottom of the borehole. If the material is not competent, it is recommended that a 
slotted piezometer be installed with a gravel pack to ensure that the shallow 
groundwater can be accurately characterised. 

b) In close proximity, a deeper borehole should be drilled into the Karoo formation. 
This borehole must be isolated from the weathered zone.   

c) Proper sanitary seals and/or other preventative measures should be put in place to 
prevent the irrigation water from flowing directly into the boreholes. 

 
6. Water levels should be measured in each borehole on a monthly basis. Groundwater 

sampling for the macro-constituents should be done at least 6 monthly, and before and 
after each crop is planted and harvested.  

7. Data should be compiled into a database and handled as prescribed in DWAF’s 
Minimum Requirements (2005). 
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