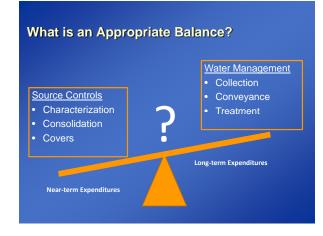
CDM

Mine Water Remediation at Large-Scale Metal Mines: Balancing Near-Term Expenditures for Source Control with Long-Term Expenditures for Collection and Treatment

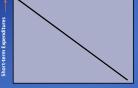
M. Nelson, G. Hazen, S. Fundingsland CDM Inc.

Mine Water Remediation at Large-Scale Metal Mines


- Remediation goals
 - Compliance with water quality standards
 Protection of human health and environment

 - Achieve post remediation land uses
- Always limited capital
- Common disagreement among stakeholders
 Governmental agencies responsible for
 - environmental protection - Mining corporations and other responsible parties
 - Other stakeholders

7/11/2011


Why do we care?

- Facilitate better decisions
- Prioritize limited funding
- Understand goals and perspectives of stakeholders

Who should care?

- Mining Company Representatives
- Governmental Representatives
- Researchers
- Consultants

Higher short-term expenditures designed to facilitate lower long-term expenditures

Expenditures that reduce mine water generation designed to reduce long term water treatment costs

ong-term Expenditures

Regulators, responsible parties, and stakeholders may disagree regarding the appropriate balance between short-term and long-term expectations

Potential Means to Achieve an Appropriate Balance

Economic Evaluations:

- Cost estimates of potential remedial strategies
- Present value analyses evaluating expected shortterm and long-term expenditures
- Cost estimate risk analysis

Other Considerations:

- Human health and ecological risk
- Uncertainty in future regulations
- Remedy performance risks
- Sustainability considerations
- Funding considerations

Engineering Cost Estimates of Potential Remedial Strategies

- Generally completed for potential remedial strategies
- Short-term expenditures
 - Earth moving
 - Low permeability covers
 - Construction of major treatment infrastructure
- Long-term expenditures
 - Mine water management, treatment
 - Remedy maintenance

Present Value (PV) Analysis

- Means to understand <u>economic efficiency</u> of potential remedial strategies
- Economic efficiency is defined as:
- "expenditures by either private industry or government agencies that manage the environmental liability associated with mine water in an efficient manner"
- Established method that estimates the value in current dollars of a series of future expenditures

Components of PV Analysis

- Defined series of future expenditures
- Discount rate
 - accounts for the productivity of capital if applied to alternative uses
- Period of analysis
- Facilitates comparison of strategies with varying shortterm versus long-term expenditures

Where X_t is the payment in year t and *i* is the discount rate

Example PV Calculation for Long-term Water Treatment

Annual inflows w/ avg. precip: Treatment cost: Annual Treatment Cost (present dollars):			400,000,000	liters	
			\$3.00	per 1000 liters	
			\$1,200,000.00		
Capital Cost Discount Rate: 3.			\$5,000,000		
		3.00%			
Year	Capital Cost	Treatment Cost	Total Cost	Total PV: Discount Rate	\$44,119,00 Present Value
Teal	Capital Cost	Treatment Cost	TOTALCOST	Discount Rate	Present value
0	5,000,000	\$1,200,000	\$6,200,000	1.00000	\$6,200,000
1	0	\$1,200,000	\$1,200,000	0.97087	\$1,165,049
10	↓ 0	\$1,200,000	\$1,200,000	0.74409	\$892.913
10	U	\$1,200,000	\$1,200,000	0.74409	\$092,913
20	ò	\$1,200,000	\$1,200,000	0.55368	\$664,411
1		1			
30	0	\$1,200,000	\$1,200,000	0.41199	\$494,384
40	i	\$1.200.000	\$1,200.000	0.30656	\$367.868
40	U	\$1,200,000	\$1,200,000	0.30656	\$307,000
100	0	\$1,200,000	\$1,200,000	0.05203	\$62,439

Example of present value estimate at various discount rates

Annual Mine Water Treatment Volume (liters)	Mine Water Treatment Cost (\$ per 1000 liters)	Initial Treatment Plant Capital Cost	Discount Rate	Present Value of Mine Water Treatment (100 year duration)
400 million	\$ 3.00	\$ 5 million	7 percent	\$ 23.3 million
400 million	\$ 3.00		5 percent	\$ 30.0 million
400 million	\$ 3.00	\$ 5 million	3 percent	\$44.1 million

Alternative remediation strategy that exceeds \$44 million total cost would be less economically efficient then this strategy (assuming equal educemental extention)

Provides a basis for comparison of various approaches (e.g. source control strategy involving extensive earthwork, versus treatment strategy)

Cost Estimate Risk Analysis

- Unfortunately, during feasibility study or scoping stages, cost estimates are tenuous
 - Ultimate design scope may be unknown
 - Design quantities?
 - Design details?
 - Implementation schedule may be unknown
 - Diesel fuel cost?
 - Cover cost?
- Cost estimate risk analysis uses Monte Carlo simulation to address these issues

Monte Carlo Simulation in Cost Estimate Risk Analysis

- Propagate uncertainties associated with each input through the cost estimate
- Provide a probabilistic estimate of cost risk for a given remedial strategy
- Define specific probability distribution for various inputs to cost estimate
 - Historical costs adjusted for inflation
 - Range of uncertainty in volume estimates

xample of a triangular ribution for future diesel Professional judgment etc.

Monte Carlo Simulation in Cost Estimate Risk Analysis (continued)

- Facilitates cost comparisons for various strategies using a standard probability level
- Identifies critical elements that are "drivers" to the overall cost risk
- Prepares decision-makers for potential costs at later design stages
- Facilitates better decisions

Other considerations for effective remediation decisions

- Clearly, cost is not the only issue
- Other issues may include
 - Mitigation of other human health or ecological risks
 - Uncertainty in future regulations
 - Remedy performance risks
 - Sustainability considerations
 - Funding considerations

Priority of these issues in mine remediation and closure decisions may be viewed differently by various stakeholders

Mitigation of other human health or ecological risks

- Other risks may be present...
 - Incidental ingestion, inhalation
 - Lead risks at Pb-Zn-Ag deposits
 - Arsenic risks at Au or U-V
 - deposits
 - Wind dispersion

DustAsbestos

May require source control remedy regardless of mine water cost analysis

Uncertainty in Future Regulations

- Problematic issue for mine water remediation in US
- Surface water standards may change every three years in Triennial Review
- Most problematic for industry in US
 - Pollutant discharge permits may change each 5 years
- When considering long-term treatment, discharge standards that will apply in future are strictly unknown
- Remedies focused on water treatment may be more flexible

Remedy Performance Risks

- How well will source controls work?
 - What if they don't work as well as expected?
- Source control remedies particularly subject to this risk

- Treatment remedies less subject to this risk
 - Lower near-term expenditure

Funding Sources for Mine Remediation

- May drive decisions for some stakeholders
- Private industry
 - Competing needs/investments
 - Future liability
- Government funding
 - Types of funding mechanisms
 - Timing and sourcing
 - Risk of loosing future govt. funding sources
 - Risk of bankruptcy of regulated mining companies
- Can we influence future legislation?

Conclusions

- Mine water mitigation at large-scale metal mines technically challenging and expensive
- Need to achieve an appropriate balance between nearterm and long-term expenditures
 - Meet the requirements of environmental laws
 - Protect human health and environment
 - Manage level of capital expenditures
 - Private mining corporations
 - Government agencies
 - Efficiently mitigate legacy sites
 - Facilitate continued mineral production and environmental protection in future