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Abstract 

In this study two adsorbents were systematically synthesized through grafting using different 
biomaterials to target specific pollutants. Ethyl acrylate was grafted to guar gum using potassium 
persulfate as initiator to form the guar gum-graft-poly(ethylacrylate) (GG-g-PEA) for the reduction of 
the hardness of solutions; while the polyacrylamide (PAM) was grafted on the backbone of chitosan to 
form chitosan-g-polyacrylamide (C-g-PAM) for the reduction of salinity of solutions. The adsorbents 
were characterized to confirm their properties using scanning electron microscope (SEM) and they 
were tested for the removal of calcium and magnesium, and sulfate respectively from solutions. The 
results show that the grafting process was successful for both GG-g-PEA and C-g-PAM formation. 
Both adsorbents showed good removal potential of the respective pollutant, and their adsorption 
behaviour was predicted by kinetic and isotherm models. It was observed that GG-g-PEA did not 
exhibit exactly the same behaviour for the removal of calcium and magnesium; as the adsorption 
capacity predicted by the pseudo second order kinetic model for the adsorption of Ca (qe = 32.87 
mg/g) was relatively high compared to Mg (qe = 30.45 mg/g). The removal of sulfate by C-g-PAM 
fitted the Langmuir model (qm = 277.78 mg/g) and the pseudo-second order kinetic model (qe = 128.21 
mg/g).  
The study has shown that improvement of the properties of biopolymers through grafting could allow 
their application in the reduction of hardness and salinity of water.  
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Introduction  

Effluents from acid mine drainage or activities such as coal preparation as well as other anthropogenic 
activities often contain high concentration of sulphate, calcium, sodium, magnesium and chlorides. 
Mines, smelters, kraft pulp, paper mills, textile mills and tanneries are some of the major sources of 
sulphates discharged into environmental water; metallurgical roasting processes and combustion of 
fossil fuels produce atmospheric sulphur dioxide which is converted to dilute sulphuric acid and falls 
as acid rain contributing to the sulphate content of surface water. Calcium and magnesium are 
naturally abundant in soils or rocks and become available in water through the weathering/dissolution 
of exposed ore, waste rock and tailings (Banks et al. 1997; Schmiermund et al. 1997; Mendez-Ortiz et 
al. 2007). It has been found that these dissolved ions in combination have a negative effect on the 
aquatic life and balance of its ecosystem. Sulphate may cause health problem to human only if it 
occurs at high concentrations in drinking water; vulnerable people such as children, transients and 
elderly are considered as the subpopulation more sensitive to the cathartic effects of exposure to high 
concentrations of sulphate, because of the potential high risk of dehydration from diarrhoea that may 
be caused by high levels of sulphate in drinking water (US EPA 1999a, b). Magnesium is reported to 
have a more toxic effect on the aquatic life than calcium (van Dam et al. 2009). However, these 
contaminants have been neglected because of the lower effect on human being. Common practices for 
the removal of sulphate and calcium, mainly consist of the use of coagulation/flocculation processes or 
reverse osmosis which are either ineffective, costly or result in toxic byproducts. Adsorption is a better 
alternative to remove such pollutants from water, giving the opportunity to recover and control the 
pollutant while regenerating the adsorbent. Biopolymers are suitable adsorbent for the fact that they 
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are widely available and are biodegradable. Among these, agricultural wastes, organic polymeric 
resins, polysaccharide such as chitin and starch, and their derivatives (cyclodextrin and chitosan) 
(Robinson et al. 2002; Synowiecki and Al-Khateeb 2003; Bailey et al. 1999; Yuryev et al. 2002; Babel 
and Kurniawan 2003; Varma et al. 2004; Crini and Morcellet 2002). Intrinsic properties of 
biopolymers such as high reactivity due to the presence of chemical reactive groups, physico-chemical 
characteristics, chemical stability, renewability and biodegradability make them very attractive 
adsorbents (Ciesielski et al. 2003; Polaczek et al. 2000; Fosso-Kankeu et al. 2011, 2015, 2016). Cross-
linking agents can be used to improve the performance of biopolymers as adsorbents through 
enhancement of their mechanical properties and their stability in acid solutions (Chiou et al. 2004); 
example of cross-linking reagents include ethylene glycon diglycidyl ether, epichlorohydrin, 
formaldehyde, glutaraldehyde, glyoxal and isocyanates (Crini and Badot 2008). 
In this study two adsorbents were systematically synthesized through grafting using different 
biomaterials to target specific pollutants, namely calcium and magnesium (hardness) as well as 
sulphate (salinity). 

Methods  

Reagents 

Guar gum (GG), de-acetylated chitosan (high molecular weight) and sodium sulfate were purchased 
from Sigma-Alrdrich (SA). Ethyl acrylate, acrylamide and potassium peroxodisulfate were purchased 
from Merck Chemical Co. Ltd., and calcium nitrate, acetone, magnesium chloride and ammonium 
ceric nitrate were purchased from ACE Pty. Ltd. 

Synthesis of copolymers 

Synthesis of guar gum-graft-poly(ethylacrylate) (GG-g-PEA) 

Guar gum was dissolved in 15 mL of distilled water using a magnetic stirrer. The solution was stirred 
for 10 minutes in a 600 mL beaker. To this 3 mL of ethyl acrylate (0.17 M) was added to the GG 
solution and was stirred for 10 minutes. Potassium persulfate (0.0035 M) was added to the reaction 
mixture and solution was stirred for another 5 minutes. The reaction mixture was irradiated in a 
domestic microwave (Hisense microwave grill, 900 MW, microwave frequency 2450MHz) at a known 
microwave power (60%, 80%, and 100%) for a definite time (1 min, 2 min and 3 min) period. After 
exposure the reaction mixture was allowed to cool down to room temperature and was precipitated 
with an excess amount of acetone. The copolymer was then washed with acetone. The grafted 
copolymer samples were then placed in a Soxhlet apparatus for 3 hours to dissolve the homopolymer. 
The GG-g-PEA samples were then dried in an oven for 24 hours at 40°C to a constant weight. The 
samples were then crushed using a pestle and mortar and the polymer was weighed. The copolymer at 
optimum microwave power and time was used in adsorption experiments. The microwave power was 
varied from 60% to 100% in increments of 20%. The exposure time was varied from 1 min to 3 min in 
increments of 1 min. 

Synthesis of chitosan-g-polyacrylamide (C-g-PAM) 

The grafting of the PAM onto the chitosan backbone was done using the ceric ammonium initiation 
method (Yuan et al. 2010). 100 mL of a 1% acetic acid solution was prepared in a 250 mL Erlenmeyer 
flask, into which, 0.4 g of chitosan was added and shaken at 100 rpm for 30 minutes. The same weight 
of ceric ammonium nitrate was added with a pre-determined amount of PAM and the mixture was 
allowed to react for 3 hours. After the 3 hours, the mixture was precipitated in acetone and the white, 
jelly like copolymer was washed with more acetone two more times, to remove any homopolymer. All 
the copolymer was added into a single beaker and this was dried in a vacuum oven at 50oC for 24 
hours. 

Characterization of synthesized copolymers 

SEM analysis was done to identify the compound morphology. The model used was a FEI Quanta 200 
ESEM Scanning Electron Microscope, integrated with an Oxford Inca 400 energy dispersive x-ray 
spectrometer. 
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Adsorption experiments 

Removal of calcium and magnesium 

The synthesized guar gum-graft-poly(ethylacrylate) (GG-g-PEA) copolymer was evaluated for the 
removal of Mg2+ and Ca2+ from aqueous solutions and conditions of adsorptions parameters were 
optimized. Different adsorption parameters were changed while keeping the others constant. The 
adsorption experiments were carried out in a temperature controlled incubator shaker set at a speed of 
200 rpm, keeping temperature constant at 30 °C for 2 h and 30 min. The adsorption of Mg2+ and Ca2+ 
was investigated at various time intervals (5, 20, 40 and 60 mins) while keeping constant the other 
parameters: the concentration was fixed at 50 mg/L, total volume of solution was 25 mL and an 
adsorbent dosage of 25 mg was used. The effect of initial metal ion concentration was also 
investigated. The concentration of the metal ions in solution ranged from 25-100 mg/L. The 
suspensions were centrifuged at a speed of 4000 rpm for 10 min. The supernatant was then transferred 
into glass vials for analysis. Control experiments revealed that no sorption occurred on glassware. 

Removal of sulphate 

The adsorption experiment was carried out in a batch system. Sodium sulphate was added to 100 mL 
of de-ionized water and shaken lightly until the sulphates were dissolved. Chitosan-g-polyacrylamide 
(C-g-PAM) copolymer was then added and allowed to adsorb the sulphates before a small sample of 
the solution was removed and centrifuged. 1 mL of the centrifuged liquid was mixed with 10 mL of a 
1% nitric acid solution and sent for ICP-OES analysis to find the concentration of sulphur still present 
in the water. For the tests, four different parameters were tested, one at a time with the others kept 
constant.  

The parameters tested included the copolymer concentration (0.1 g/100 mL, 0.2 g/100 mL, 0.3 g/100 
mL, 0.4 g/100 mL), sulphates concentration (500 mg/L, 1000 mg/L, 2000 mg/L, 3000 mg/L) and 
adsorption time (15 min, 30 min, 60 min, 90 min). One parameter was varied while the others were 
kept constants. 

Isotherms and kinetics models 

The adsorption affinity of the copolymer adsorbent for the removal of the adsorbate was evaluated 
using the Langmuir and Freundlich isotherms. The Langmuir isotherm model assumes monolayer 
adsorption in single solute systems with its linear form given by (Fosso-Kankeu et al. 2011; Mittal et 
al. 2013; Fosso-Kankeu et al. 2015): 

𝐶𝑒

𝑞𝑒
=

1

𝑘∙𝑞𝑚
+

𝐶𝑒

𝑞𝑚
          

 (1) 

 

The Freundlich model is not restricted to monolayer adsorption and it can be applied in 
heterogeneous systems where its linear form can be expressed by: 

log 𝑞𝑒 = log 𝑘𝑓 +
1

𝑛
∙ log 𝐶𝑒         (2) 

In the isotherm models Ce is the concentration of adsorbate at equilibrium in (mg/L), qe is the amount 
of adsorbate adsorbed per unit mass of adsorbent at equilibrium in (mg/g), qm is the adsorption 
capacity in (mg/g), k is a Langmuir constant related to energy released during adsorption in (L/mg), kf 
is the Freundlich adsorption capacity parameter in (mg/g) and n is the intensity of adsorption. 

To aid in identifying the adsorption rate the pseudo first- and second order models are used (Patil 
and Nayak 2011; Fosso-Kankeu et al. 2011; Mittal et al. 2013; Fosso-Kankeu et al. 2015). The pseudo 
first- and second-order kinetic models are given by:  

log(𝑞𝑒 − 𝑞𝑡) = log 𝑞𝑒 − 𝑘1 ∙
𝑡

2.303
        (3) 

𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒
2 +

1

𝑞𝑒
∙ 𝑡          (4) 

Proceedings IMWA 2016, Freiberg/Germany  |  Drebenstedt, Carsten, Paul, Michael (eds.)  |  Mining Meets Water – Conflicts and Solutions

996



where: qe is the amount of adsorbate adsorbed per unit mass of adsorbent at equilibrium in (mg/g), qt is 
the amount of adsorbate adsorbed at time t in (mg/g), k1 is the first order rate constant in (min-1), k2 is 
the second order rate constant in (g/mg.min-1) and t is the time in (min). 

Results and discussion 

Physicochemical characteristics of copolymers 

Morphology of copolymers 

Guar gum (GG) and GG-g-PEA 

The surface morphology of guar gum (GG) and GG-g-PEA was studied by using a scanning electron 
microscope to investigate the grafting of PEA onto GG. It can be seen from Figure 1a that the fibrous 
nature of the guar gum particles and it suggests that the biopolymer is amorphous by nature. The 
grafted copolymers particle size is significantly higher than GG, which is evidence that Ethyl acrylate 
was grafted successfully onto GG and the particles also differ in shape. 

 
Figure 1 SEM micrograph of guar gum (a) and GG-g-PEA (b) 

Chitosan and C-g-PAM 

The SEM images in Figures 2a and b show the pure chitosan and C-g-PAM at 800x magnification, 
respectively. The main difference that indicates successful grafting is the tiny dots and particles on the 
surface of the copolymer which is where the PAM was grafted to the chitosan backbone. These images 
compare very well with other SEM images from literature (Shanmugapriya et al. 2011; Patil and 
Nayak 2011). 

 
Figure 2 SEM micrograph of pure chitosan (a) and C-g-PAM (b) 
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Adsorption isotherm study 

Langmuir model 

The Langmuir graph was made by plotting Ce/qe vs. Ce where the slope = 1/qm and the intercept = 
1/KLqm. 

Removal of Ca(II) and Mg(II) 

The Langmuir isotherm is valid when monolayer adsorption is assumed due to a finite number of sites 
available on the surface of the adsorbent. The linear relation of the Langmuir model is used to 
calculate the maximum adsorption capacity (qm mg/g) and the Langmuir constant (k) using the slope 
and the y-intercept. According to the results, summarised in Table 1, this model does not fit the data 
for the adsorption of Ca(II) and Mg(II) as shown by the values of the coefficient of determination (R2) 
which are relatively low (0.7276 and 0.8158 for the adsorption of Ca(II) and Mg(II) respectively). It 
implies that the Langmuir model is not suitable for the prediction of the adsorption behaviour, 
therefore homogeneous binding does not take place. 

Removal of SO4
2- 

From the Langmuir plot of the adsorption of sulphate the adsorption parameters were obtained; the 
value of qm was 277.78 (mg/g) and KL was 0.00349. The R2 value was relatively close to unity, 
implying that the adsorption occurs mainly on the monolayer surface. 

Freundlich model 

Removal of Ca(II) and Mg(II) 

In this model it is considered that heterogeneous adsorption takes place and that the adsorption 
capacity depends on the concentration of the copolymer. This type of model is usually used for 
solutions of low concentration of adsorbate (Mittal et al. 2013). The constants such as Kf, 1/n and R2 
are listed in Table 1. The Freundlich constants were calculated from the slope and y-intercept from a 
linear plot of logqe vs. logCe. It is observed that the values of the coefficient of determination are close 
to unity (for the adsorption of Ca(II), R2 = 0.914 and for the adsorption of Mg(II), R2 = 0.955), 
implying that the Freundlich model is suitable for the prediction of the adsorption behaviour. The 
value of Kf is a rough indicator of the adsorption capacity and 1/n is an indicator of the adsorption 
intensity. As the value of Kf increases the adsorption capacity of adsorbent for a given adsorbate also 
increases. The value of the exponent, 1/n gives us an indication of the favourability of adsorption. It is 
observed that GG-g-PEA has a greater adsorption capacity for Ca(II). If the values of 1/n are less than 
1.0, this indicates that the adsorption process is favourable over the whole range of concentrations 
studied and if the values of 1/n are bigger than 1.0 then this indicates that the adsorption process is 
favourable at higher concentrations but not favourable for lower concentration (Fosso-Kankeu et al. 
2015, 2016). 

Removal of SO4
2- 

The Freundlich isotherm graph, plotted as logqe vs. logCe, had a much worse fit with the very low R2 
value indicating the poor fit. Thus the values that could be calculated from this method will be 
disregarded. 

Table 1 Calculated parameters for the adsorption isotherm models 

Isotherms Parameters Ca(II) Mg(II) SO4 

Langmuir 
qe 

No fit No fit 
277.8 

b 0.0035 
R 2 0.9 

Freundlich 
1/n 4.288 3.26 

No fit Kf 0.0029 0.00019 

R 2 0.914 0.9553 

Proceedings IMWA 2016, Freiberg/Germany  |  Drebenstedt, Carsten, Paul, Michael (eds.)  |  Mining Meets Water – Conflicts and Solutions

998



Adsorption kinetics study 

Pseudo-First order 

Removal of Ca(II) and Mg(II) 

The pseudo first order model was applied for the kinetic study of the adsorption of Ca(II) and Mg(II) 
onto GG-g-PEA. The plot of log(qe-qt) vs t allowed to determine the kinetics parameters (Table 2) of 
the pseudo first order for both Mg(II) and Ca(II) adsorption. The adsorption data for Ca(II) does fit 
with the pseudo first order model and is indicated by the value of R2 (0.9860), the adsorption data of 
Mg(II) does not fit the pseudo first order model and is indicated by the value of R2 (0.879). Thus the 
pseudo first order kinetics can be used to describe the adsorption of Ca(II) but cannot be used to 
describe the adsorption of Mg(II). 

Removal of SO4
2- 

The value (6.803) of the coefficient of determination from the plot of log(qe-qt) vs t for the pseudo first 
order, was relatively low and therefore not suitable to predict the adsorption behaviour for the removal 
of sulphate. 

Pseudo-Second order 

The pseudo second order model was also applied for the kinetic study of the adsorption of Ca(II) and 
Mg(II) onto GG-g-PEA. The model fits well with the adsorption data of Ca(II) and Mg(II) and is 
indicated by the values of R2 (Table 3). The kinetic parameters of this model are tabulated in Table 3. 
The R2 values for the adsorption of Ca(II) and Mg(II) are 1 for both Ca(II) and Mg(II) which suggests 
that the pseudo-second order rate model is an appropriate assumption, demonstrating that the 
adsorption occurs via a chemisorption process (Mittal et al. 2013; Fosso-Kankeu et al., 2014). The 
adsorption capacity of GG-g-PEA is relatively high for both metals and it is qe = 32.87 and qe=30.45 
for Ca(II) and Mg(II) respectively. Metal ions with higher atomic weight can generate higher 
momentum energy, which may promote the adsorption of the metal ion by increasing the probability 
of effective cohesion between the metal ion and the sorbent surface; it therefore ensues that a higher 
atomic weight leads to higher adsorption preference by the sorbent. This explains the preferential 
binding of Ca(II) on the copolymer (Fosso-Kankeu et al. 2011; Fosso-Kankeu and Waanders 2014). 

Removal of SO4
2- 

The values from the time tests were used to plot the pseudo-second order graph, by plotting t/qt vs. t. 
The graph has a R2 value closer to unity which indicates the suitability of the model to predict the 
adsorption behaviour of the copolymer and thus the K2 value of -0.00092 (g/mg min) and qe value of 
128.21 (mg/g) were calculated. 

Table 2  Calculated parameters of the adsorption kinetics 
Kinetic 
Model Parameters Ca(II) Mg(II) SO4

2- 

Pseudo 
first 

order 

K1 0.05 0.047 
No fit qe 17.53 19.88 

R 2 0.986 0.879 

Pseudo 
second 
order 

K2 0.268 0.3835 -0.009 
qe 32.87 30.45 128.21 

R 2 1 1 0.98 
 

Conclusions 

The GG-g-PEA and C-g-PAM were successfully synthesized in this study as shown by the SEM 
results. The application of the synthesized adsorbents for the reduction of the hardness and salinity of 
water, showed that their capacity could be easily predicted using the pseuso-second order kinetic 
model. It was therefore deduced that the GG-g-PEA had higher affinity for Ca(II) than Mg(II) while 
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C-g-PAM exhibited a relatively high adsorption capacity for SO4
2-. The developed adsorbents can 

therefore be considered to remediate surface water pollution. 
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