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Abstract
A key goal of many mining groundwater investigations is to identify the main geological 
features, hydraulic boundaries and connection pathways that will materially influence: 
a) operations of a project, and b) the natural resources connected to the groundwater 
system. Exploratory data science techniques such as machine learning provide the 
experienced mining hydrogeologist opportunities to accelerate understanding of the 
role of key features within a site hydrogeological conceptual model (HCM) that may 
affect groundwater management. This has implications for both regulatory approval 
processes and operational efficiency.
Keywords: hydrogeological conceptual model, data science, machine learning, ground-
water management
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Introduction
Data science comprises three overlapping 
disciplines: 1) statistical modelling and 
analysis; 2) computer science skills necessary 
to efficiently store, process and visualise 
data; and 3) domain expertise in terms of 
classical training in a subject (VanderPlas 
2017). The domain expertise (in this case 
mining hydrogeology) is necessary to pose 
the right questions and contextualise the 
outputs of the analysis. 

In this paper we will review a recent 
mining project where data science techniques 
were implemented to identify which key 
geological features that have potential to 
influence future mine dewatering rates. The 
authors were engaged by our mining client 
to undertake a feasibility study (FS) for 
water management and river realignment 
for extension of several open cut pits. The 
mine site is underlain by sedimentary rock 
aquifers made up of calcareous sediments 
and dolomite with a porphyry intrusion 
aquitard. The aquifers are intersected by a 
dense network of subsurface faults that are 
situated within a broader pull-apart basin. 

Faults have potential to control 
groundwater flow dynamics via cross-fault 
juxtaposition and modification of rock 
properties in the vicinity of the fault (e.g. 
Caine et al. 1996; Scibek et al. 2016; McCallum 

et al. 2018; OGIA 2019). Conceptually, there 
are three categories of permeability structure 
within a fault zone: barriers, conduits and 
barrier-conduits (Caine et al. 1996). Barriers 
tend to reduce groundwater flux, for example, 
by reducing the permeability along the 
central fault core. Conduits tend to increase 
flux either across faults or along fault planes, 
often through enhanced permeability of the 
fault damage zone. Barrier-conduits tend 
to increase fluxes parallel to the fault plane 
(along the damage zone corridor) while 
limiting flux across the fault core. 

A key water management concern for 
future development is the potential for 
connections between the open cut pits and 
a nearby river through faults and related 
structural features. The null hypothesis at the 
mine site was that faulting has no influence 
on aquifer hydraulic properties. Previous 
groundwater modelling studies at the site 
(e.g. the mine prefeasibility study) adopted 
this hypothesis, and faults were not explicitly 
differentiated in the model domain. Given 
the stress regime and geological setting, an 
alternative hypothesis is that the normal 
NE-SW faults are oriented favourably with 
the principal horizontal stresses and are 
therefore expected to be dilated and could act 
as regional conduits for groundwater fluxes. 
Ten regional-scale NE-SW faults have been 
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mapped in close vicinity to the proposed 
mine pits. If some, or all of these faults were 
conduits, then it would have implications 
for pit dewatering requirements. Further, 
a number of these faults intersect a major 
regional perennial river, and the degree of 
groundwater-surface water connectivity may 
be a controlling factor in the feasibility of 
mining in this area. 

Aquifer testing undertaken during the 
FS development was designed to specifically 
challenge these hypotheses. Aquifer tests 
were conducted in different rock types that 
were situated at a range of distances from 
variably-oriented faults. The objective of the 
data science approach was to interrogate the 
thousands of data points that were generated 
by the field investigations and to challenge 
the null hypothesis. 

Methods 
There are 75 estimates of hydraulic 
conductivity (K) generated from six constant 
rate pumping tests, including recovery 
tests, and 37 slug tests undertaken during 
various stages of project development. These 
aquifer tests were undertaken at three main 
hydrostratigraphic units and key geological 
contact zones. Twenty-three groundwater 
samples were analysed for major ion 
chemistry to provide an independent line of 
evidence on the influence of faults on regional 
groundwater flow processes. The K data 
and chemistry data were interrogated using 
an integrated data science approach that 
included geological modelling, geospatial 
analysis and statistical analysis. The integrated 
data science approach incorporated:
• Geological modelling to visualise the 

three-dimensional architecture of the hy-
drostratigraphic units and faults, using 
Leapfrog software (Seequent).

• Analysing the aquifer testing datasets in-
cluding time-drawdown derivative analy-
sis to further characterise system bound-
ary conditions and flow system types, 
using AQTESOLV software (HydroSOL-
VE, Inc.). 

• K data and chemistry data were embed-
ded with geospatial attributes including 
host rock type and distances to the near-
est fault types. QGIS 3.8.3 is an open-

source geographic information system 
(GIS) platform that was used for spatially 
analysing the outputs from Leapfrog and 
AQTESOLV.

• Exploratory data analysis (EDA) includ-
ing statistical analysis and machine learn-
ing (ML) were then used to challenge the 
null hypothesis and seek support for the 
alternative hypothesis: that the stress re-
gime has enhanced the rock permeabil-
ity along NE-SW normal faults. Pandas, 
Numpy, Seaborn and Scikit-Learn are all 
open source data analysis libraries built 
on top of the Python programming lan-
guage. Jupyter Notebook was used to ac-
cess these Python libraries and clean the 
datasets and undertake statistical analysis, 
data visualisation and machine learning.

We also undertook unsupervised, multi-
variate machine learning analyses of the 
Project major ion water chemistry dataset. 
The objective of these analyses was to identify 
any indicators of groundwater-surface water 
connectivity during the three constant rate 
discharge (CRD) tests that targeted specific 
faults. Two different unsupervised ML 
algorithms were utilised, namely:
• K-means cluster analysis (KCA); and
• Principal component analysis (PCA). 

Data Science Workflow and Results
A geological resource model was 
built in Leapfrog, using data from the 
exploration drilling program and targeted 
hydrogeological investigations. This model 
contained the main dolomitic and calcareous 
sedimentary rock formations, as well as the 
rhyodacite porphyry unit. All of the main 
geological formations are heavily faulted. 
In general, the faults tend to be oriented in 
four main directions: a conjugate pair of N-S 
striking faults and E-W striking faults; and 
a separate conjugate pair of NE-SW striking 
faults and NW-SE striking faults. In total, 
over 100 faults have been mapped within 10 
km of the mine site. 

To explore the influence of faults on 
groundwater inflows to open cut pits, the 
FS field investigation undertook targeted 
test pumping at three main fault locations. 
At each of these three locations, the test 
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Table 1 Summary of K estimates per HSU and Aquifer Test Type

Test type HSU Count Mean 
m/day

St.Dev 
m/day

25th 
Percentile

m/day

75th 
Percentile

m/day

Min 
m/day

Max 
m/day

CRD test 
drawdown

HSU1 1 34 - - - - -

HSU2 24 14 17 0.7 19 0.01 56

HSU3 3 2 3 0.7 3 0.3 5

CRD test 
recovery

HSU1 1 12 - - - - -

HSU2 7 29 34 4 50 1 82

HSU3 2 2 0 2 2 2 2

Slug test HSU2 31 12 17 1 14 3x10-6 60

HSU3 6 3 2 2 4 0. 4

pumping bore and observation bores were 
constructed to intersect these mapped and 
modelled fault structures in the near vicinity 
of the proposed pits. These three CRD tests 
along faults complemented three previous 
Pre-FS CRD tests that tested the bulk rock 
transmissivity and storage properties away 
from faults.  

Confined aquifer analytical radial flow 
solutions were primarily used in the analysis 
of the pumping test data. Generally, confined 
behaviour was observed through the timing 
and nature of the observation bore responses 
to pumping, which reflected low values of 
elastic storage. The approach to the analysis 
was sequential, starting with a simplified 
assumption of infinite acting radial flow to 
the pumped well and adding complexity 
where necessary. Table 1 summarises the K 
estimates that were derived for each major 
rock formation with respect to each aquifer 

test type. This aquifer testing forms the basis 
for our subsequent interpretation.

The diagnostic flow plots (time drawdown 
and drawdown derivative plotted together) 
aided in confirming the aquifer flow regimes 
and identifying key boundary conditions 
at two aquifer test locations (Figure 1). At 
one test location, barrier boundaries were 
identified in multiple observation bores 
at approximately 550 m from the pumped 
bore, which is the approximate distance 
to the nearby porphyry intrusion, a site 
aquitard. At the other test pumping location, 
a constant source recharge boundary was 
identified at 250-300 m from the pumping 
bore, which was the approximate distance 
to the regional perennial river. The HCM 
was modified to reflect the aquitard barrier 
boundary and potential for hydraulic 
connection with the river.

Figure 1 Characteristic diagnostic flow plots showing: a) presence of no flow barrier associated with porphyry 
intrusion (Left); and b) presence of constant head recharge boundary associated with hydraulic connection to 
a regional-scale perennial river (Right). 
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To enable spatial analysis of the K data, the 
solid geology and fault architecture was 
extracted from the Leapfrog geology model 
and imported into QGIS. Geospatial analysis 
included:
• Each fault was characterised based on 

its broad orientation into one of the four 
main spatial types and converted from a 
line to an array of 1m-spaced points.

• The distance between each K data point 
and the nearest fault point from each of 
the four fault groups was calculated.

The corresponding K-fault distance dataset 
was imported into Pandas to create a 
dataframe for hypothesis evaluation. Figure 2 
presents the K distributions for each type of 
hydraulic test. 

Figure 2a presents the K data with respect 
to the host bedrock geology. This plot shows 
that the K distributions are similar across 
different geological formations, except for 
the contact with the porphyry intrusion 
which acts as a regional aquitard. Geological 
formations that are dominantly fine-grained 
(siltstones and mudstones) have similar K 
to formations that are expected to be more 
permeable which highlights the strong 
influence of secondary porosity through 
fractures and karst. Also, of note is that the 
similar ranges of K values from different test 
types suggests that localised permeability 
features encountered in slug tests translate 
to macro-scale features encountered at the 

Figure 2 Boxplots of hydraulic conductivity for each test type: a) categorised by type of bedrock geology (Left); 
and b) by geographic location with respect to vicinity to the nearest open cut pit.

pump test scale (i.e. local-scale fracturing is 
interconnected at the macro scale). Figure 2b 
presents the K data with respect to geographic 
location and shows that higher K features are 
encountered more often at the South Pit area.  

Figure 3 presents a series of jointplots 
showing the relationship of K to distance 
from each of the four fault type groups. These 
plots consider the probability distribution 
for the K data and the distance of that K 
data from the given fault type. Each of the 
four fault types have a good representation 
of nearfield and farfield K data to provide 
spatial context on whether the faults are 
influencing the permeability structure within 
the aquifers. The top two plots present the 
first conjugate pairs of faults being N-S and 
E-W orientations. Despite having a high 
number of data points close to these fault 
features, the probability distribution shows 
that a large number of the particularly high 
K points are situated away from these faults, 
and only a small number of high K points are 
within 50-75 m of the fault. It does not appear 
that these N-S and E-W faults are influencing 
permeability distribution.

In stark contrast, the NE-SW and NW-SE 
faults (the bottom two plots in Figure 3) 
show a much stronger relationship between 
proximity to faults and higher K. Figure 
4 evaluates this relationship by area, and 
demonstrates that the NE-SW oriented faults 
(left plot) have higher K values in the South 
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Pit and West Pit areas within 50 m of faults, 
as compared to the background fracture K 
which tended to be <10 m/day. The NW-SE 
transfer faults do not exhibit this same 
relationship and the proximity to these faults 
is not an explanatory variable for higher 
K within a reasonable fault damage zone 
corridor (i.e. <50 m). 

As an independent line of evidence, both 
KCA and PCA were conducted sequentially 
to interrogate water quality data. Three 
main groups of groundwater quality were 
obtained through the KCA, and these 
groups broadly aligned with the two main 
hydrochemical facies being Ca-SO4 type 
water north of the porphyry intrusion and 

Figure 3 Jointplots showing the relationship of K to distance from each of the four fault types: a) Distance from 
N-S faults (Top Left); b) Distance from E-W faults (Top Right); Distance from NE-SW faults (Bottom Left); 
and d) Distance from NW-SE faults (Bottom Right).

Ca-HCO3 type water south of the intrusion. 
There are a number of potential surface 
water-groundwater processes that can be 
observed from the PCA analysis: 
• South Pit observation bore chemistry is 

similar to the nearby perennial river sam-
ple prior to and after the CRD test.

• The Northeast Pit and West Pit bores tran-
sition towards the perennial river sample 
chemistry towards the ends of the tests. 
This indicates potential for pumping-
induced river water recharge, suggesting 
that the fault systems may be connected 
to the river.

• The South Pit pumping bore transitions 
from a water quality that resembles a 
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nearby pit lake to groundwater that is ob-
served in two bores situated more than 1 
km to the west. 

Conclusions
In our examples, EDA and ML techniques 
facilitated by Python scripting were used to 
integrate data from aquifer testing, geological 
modelling, structural interpretation, and 
hydrochemistry analysis to achieve a more 
wholistic understanding of groundwater 
flow dynamics along structural features 
and improve both the HCM and resulting 
estimates of pit inflows and groundwater 
drawdown distribution. This improved aquifer 
characterisation has identified which styles of 
faults are likely to be more transmissive and 
in doing so provided a more robust basis 
for estimating ranges of likely groundwater 
inflows and testing of mitigation measures 
such as advanced dewatering strategies

Proper application of these techniques is 
only possible when directed by an experienced 
hydrogeologist with a keen understanding of 
the HCMs, through problem formulation 
directed at specific data gaps.
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